scholarly journals A systematic literature review of machine learning techniques for software maintainability prediction

2020 ◽  
Vol 119 ◽  
pp. 106214 ◽  
Author(s):  
Hadeel Alsolai ◽  
Marc Roper
2020 ◽  
Vol 11 (2) ◽  
pp. 49-75
Author(s):  
Amandeep Kaur ◽  
Sandeep Sharma ◽  
Munish Saini

Code clone refers to code snippets that are copied and pasted with or without modifications. In recent years, traditional approaches for clone detection combine with other domains for better detection of a clone. This paper discusses the systematic literature review of machine learning techniques used in code clone detection. This study provides insights into various tools and techniques developed for clone detection by implementing machine learning approaches and how effectively those tools and techniques to identify clones. The authors perform a systematic literature review on studies selected from popular computer science-related digital online databases from January 2004 to January 2020. The software system and datasets used for analyzing tools and techniques are mentioned. A neural network machine learning technique is primarily used for the identification of the clone. Clone detection based on a program dependency graph must be explored in the future because it carries semantic information of code fragments.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 518 ◽  
Author(s):  
Hafsa Khalid ◽  
Muzammil Hussain ◽  
Mohammed A. Al Ghamdi ◽  
Tayyaba Khalid ◽  
Khadija Khalid ◽  
...  

The purpose of this research was to provide a “systematic literature review” of knee bone reports that are obtained by MRI, CT scans, and X-rays by using deep learning and machine learning techniques by comparing different approaches—to perform a comprehensive study on the deep learning and machine learning methodologies to diagnose knee bone diseases by detecting symptoms from X-ray, CT scan, and MRI images. This study will help those researchers who want to conduct research in the knee bone field. A comparative systematic literature review was conducted for the accomplishment of our work. A total of 32 papers were reviewed in this research. Six papers consist of X-rays of knee bone with deep learning methodologies, five papers cover the MRI of knee bone using deep learning approaches, and another five papers cover CT scans of knee bone with deep learning techniques. Another 16 papers cover the machine learning techniques for evaluating CT scans, X-rays, and MRIs of knee bone. This research compares the deep learning methodologies for CT scan, MRI, and X-ray reports on knee bone, comparing the accuracy of each technique, which can be used for future development. In the future, this research will be enhanced by comparing X-ray, CT-scan, and MRI reports of knee bone with information retrieval and big data techniques. The results show that deep learning techniques are best for X-ray, MRI, and CT scan images of the knee bone to diagnose diseases.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 372
Author(s):  
Luca Ronzio ◽  
Federico Cabitza ◽  
Alessandro Barbaro ◽  
Giuseppe Banfi

This article presents a systematic literature review that expands and updates a previous review on the application of machine learning to laboratory medicine. We used Scopus and PubMed to collect, select and analyse the papers published from 2017 to the present in order to highlight the main studies that have applied machine learning techniques to haematochemical parameters and to review their diagnostic and prognostic performance. In doing so, we aim to address the question we asked three years ago about the potential of these techniques in laboratory medicine and the need to leverage a tool that was still under-utilised at that time.


2021 ◽  
Vol 4 (1) ◽  
pp. 17
Author(s):  
Tariq Mahmood ◽  
Tatheer Fatima

World is generating immeasurable amount of data every minute, that needs to be analyzed for better decision making. In order to fulfil this demand of faster analytics, businesses are adopting efficient stream processing and machine learning techniques. However, data streams are particularly challenging to handle. One of the prominent problems faced while dealing with streaming data is concept drift. Concept drift is described as, an unexpected change in the underlying distribution of the streaming data that can be observed as time passes. In this work, we have conducted a systematic literature review to discover several methods that deal with the problem of concept drift. Most frequently used supervised and unsupervised techniques have been reviewed and we have also surveyed commonly used publicly available artificial and real-world datasets that are used to deal with concept drift issues.


Sign in / Sign up

Export Citation Format

Share Document