Green synthesis of spherical TiO2 nanoparticles using Citrus Limetta extract: Excellent photocatalytic water decontamination agent for RhB dye

2021 ◽  
Vol 129 ◽  
pp. 108618
Author(s):  
Ghulam Nabi ◽  
Abdul Majid ◽  
Asma Riaz ◽  
Thamer Alharbi ◽  
Muhammad Arshad Kamran ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (76) ◽  
pp. 48083-48094 ◽  
Author(s):  
Sunderishwary S. Muniandy ◽  
Noor Haida Mohd Kaus ◽  
Zhong-Tao Jiang ◽  
Mohammednoor Altarawneh ◽  
Hooi Ling Lee

Mesoporous anatase TiO2 nanoparticles are produced by employing a facile green chemistry approach at low temperature with soluble starch as the template in this work. The obtained TiO2 photocatalyst is visible-light active with good photocatalytic activities.


Solar Energy ◽  
2019 ◽  
Vol 194 ◽  
pp. 952-958 ◽  
Author(s):  
Ishwar Chandra Maurya ◽  
Shalini Singh ◽  
Sudipta Senapati ◽  
Pankaj Srivastava ◽  
Lal Bahadur

2018 ◽  
Vol 336 ◽  
pp. 386-396 ◽  
Author(s):  
Surya Pratap Goutam ◽  
Gaurav Saxena ◽  
Varunika Singh ◽  
Anil Kumar Yadav ◽  
Ram Naresh Bharagava ◽  
...  

2022 ◽  
Vol 34 (2) ◽  
pp. 409-414
Author(s):  
N. Usha Rani ◽  
P. Pavani ◽  
P.T.S.R.K. Prasad Rao

Titanium nanoparticles are toxic to bacteria and have a widespread applications in different fields of research. Hence the present study aimed to synthesize the titanium dioxide nanoparticles by adopting green synthesis methodology using Kigelia africana leave extract as a biological reducing agent. The UV absorption spectra show characteristic absorption maxima corresponding to TiO2 nanoparticles at a wavelength of 512 nm confirms the formation of nanosized tin particles. The FT-IR spectrum of TiO2 nanoparticles show absorption bands at 3609 cm-1 and 3227 cm-1 corresponding to O-H stretching in alcoholic and carboxylic compounds, respectively. Absorption peaks at 1607, 2834, 1654 and 1324 cm-1 correspond to aromatic C=C vibrations, C-H stretching in aldehydes, C-H bending vibrations and aromatic C-N stretching vibrations, respectively. This confirms the involvement of bioactive compounds from the plant extract. The SEM and EDX studies confirmed that the nanoparticles are spherical to oval shape with an average particle size of 46 nm. The metal content in the nanoparticles was found to be 58.71%. The synthesized nanoparticles have potential growth inhibition activity against Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli). The DPPH radical scavenging activity of the nanoparticles synthesized was compared with that of aqueous leaf extract and standard ascorbic acid and proved that the nanoparticles have enhanced activity than aqueous leaf extract. The IC50 of the leaf extract, nanoparticles and the standard was found to be 31.55, 75.82 and 84.95 μg/mL, respectively. Kigelia africana leaf is shown in this work to be a valuable bioagent in the biosynthesis of TiO2 nanoparticles with increased biological activity.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
S. Rajeshkumar ◽  
J. Santhoshkumar ◽  
Leta Tesfaye Jule ◽  
Krishnaraj Ramaswamy

Phytosynthesis particles are the efficient activity of biomedical and environmental. In this present study, the green synthesis of titanium dioxide (TiO2) nanoparticles using the king of bitter herbal plant Andrographis paniculata was synthesized and characterized using XRD, SEM, HRTEM, AFM, and antimicrobial, antioxidant, and antidiabetic activities. The size of the particles HRTEM shows 50 nm, and SEM shows the spherical shape, which reveals the synthesis of TiO2 nanoparticles. XRD spectrum shows crystallinity of nanoparticles, and an average size is calculated about 22.97 nm. The phytosynthesis TiO2 shows the antioxidant and antidiabetic activities. Similarly, toxicity studies have demonstrated the hatching and viability LD 50 value of TiO2 250 μg/L. The current study’s findings suggested that phytosynthesis TiO2 using extract of Andrographis paniculata exposure to potential hazard factors to biomedical and environmental uses.


2019 ◽  
Vol 6 (9) ◽  
pp. 095034 ◽  
Author(s):  
Harpreet Kaur ◽  
Simerjeet Kaur ◽  
Jagpreet Singh ◽  
Mohit Rawat ◽  
Sanjeev Kumar

Sign in / Sign up

Export Citation Format

Share Document