Scale the Internet routing table by generalized next hops of strict partial order

2017 ◽  
Vol 412-413 ◽  
pp. 101-115 ◽  
Author(s):  
Qing Li ◽  
Mingwei Xu ◽  
Qi Li ◽  
Dan Wang ◽  
Yong Jiang ◽  
...  
Fog Computing ◽  
2018 ◽  
pp. 158-182
Author(s):  
Dan Jen ◽  
Michael Meisel ◽  
Daniel Massey ◽  
Lan Wang ◽  
Beichuan Zhang ◽  
...  

The global routing system has seen a rapid increase in table size and routing changes in recent years, mostly driven by the growth of edge networks. This growth reflects two major limitations in the current architecture: (a) the conflict between provider-based addressing and edge networks' need for multihoming, and (b) flat routing's inability to provide isolation from edge dynamics. In order to address these limitations, we propose A Practical Tunneling Architecture (APT), a routing architecture that enables the Internet routing system to scale independently from edge growth. APT partitions the Internet address space in two, one for the transit core and one for edge networks, allowing edge addresses to be removed from the routing table in the transit core. Packets between edge networks are tunneled through the transit core. In order to automatically tunnel the packets, APT provides a mapping service between edge addresses and the addresses of their transit-core attachment points. We conducted an extensive performance evaluation of APT using trace data collected from routers at two major service providers. Our results show that APT can tunnel packets through the transit core by incurring extra delay on up to 0.8% of all packets at the cost of introducing only one or a few new or repurposed devices per AS.


Author(s):  
Dan Jen ◽  
Michael Meisel ◽  
Daniel Massey ◽  
Lan Wang ◽  
Beichuan Zhang ◽  
...  

The global routing system has seen a rapid increase in table size and routing changes in recent years, mostly driven by the growth of edge networks. This growth reflects two major limitations in the current architecture: (a) the conflict between provider-based addressing and edge networks’ need for multihoming, and (b) flat routing’s inability to provide isolation from edge dynamics. In order to address these limitations, we propose A Practical Tunneling Architecture (APT), a routing architecture that enables the Internet routing system to scale independently from edge growth. APT partitions the Internet address space in two, one for the transit core and one for edge networks, allowing edge addresses to be removed from the routing table in the transit core. Packets between edge networks are tunneled through the transit core. In order to automatically tunnel the packets, APT provides a mapping service between edge addresses and the addresses of their transit-core attachment points. We conducted an extensive performance evaluation of APT using trace data collected from routers at two major service providers. Our results show that APT can tunnel packets through the transit core by incurring extra delay on up to 0.8% of all packets at the cost of introducing only one or a few new or repurposed devices per AS.


1993 ◽  
Vol 19 (3-4) ◽  
pp. 403-416
Author(s):  
David Murphy

The purpose of this paper is to present a real-timed concurrency theory in the noninterleaving tradition. The theory is based on the occurrences of actions; each occurrence or event has a start and a finish. Causality is modelled by assigning a strict partial order to these starts and finishes, while timing is modelled by giving them reals. The theory is presented in some detail. All of the traditional notions found in concurrency theories (such as conflict, confusion, liveness, and so on) are found to be expressible. Four notions of causality arise naturally from the model, leading to notions of securing. Three of the notions give rise to underlying event structures, demonstrating that our model generalises Winskel’s. Infinite structures are then analysed: a poset of finite structures is defined and suitably completed to give one containing infinite structures. These infinite structures are characterised as just those arising as limits of finite ones. Our technique here, which relies on the structure of time, is of independent interest.


2011 ◽  
Vol 218 (5) ◽  
pp. 2108-2112 ◽  
Author(s):  
Kentaro Kojima ◽  
Takehiro Inohara

2021 ◽  
Vol 5 (6) ◽  
pp. 1161-1170
Author(s):  
Valen Brata Pranaya ◽  
Theophilus Wellem

The validity of the routing advertisements sent by one router to another is essential for Internet connectivity. To perform routing exchanges between Autonomous Systems (AS) on the Internet, a protocol known as the Border Gateway Protocol (BGP) is used. One of the most common attacks on routers running BGP is prefix hijacking. This attack aims to disrupt connections between AS and divert routing to destinations that are not appropriate for crimes, such as fraud and data breach. One of the methods developed to prevent prefix hijacking is the Resource Public Key Infrastructure (RPKI). RPKI is a public key infrastructure (PKI) developed for BGP routing security on the Internet and can be used by routers to validate routing advertisements sent by their BGP peers. RPKI utilizes a digital certificate issued by the Certification Authority (CA) to validate the subnet in a routing advertisement. This study aims to implement BGP and RPKI using the Bird Internet Routing Daemon (BIRD). Simulation and implementation are carried out using the GNS3 simulator and a server that acts as the RPKI validator. Experiments were conducted using 4 AS, 7 routers, 1 server for BIRD, and 1 server for validators, and there were 26 invalid or unknown subnets advertised by 2 routers in the simulated topology. The experiment results show that the router can successfully validated the routing advertisement received from its BGP peer using RPKI. All invalid and unknown subnets are not forwarded to other routers in the AS where they are located such that route hijacking is prevented.  


2015 ◽  
Vol 7 (3) ◽  
pp. 1-23 ◽  
Author(s):  
Benjamin Edelman ◽  
Michael Schwarz

We consider market rules for transferring IP addresses, numeric identifiers required by all computers connected to the Internet. Transfers usefully move resources from lowest- to highest-valuation networks, but transfers tend to cause socially costly growth in the Internet's routing table. We propose a market rule that avoids excessive trading and comes close to achieving social efficiency. We argue that this rule is feasible despite the limited powers of central authorities. We also offer a framework for reasoning about future prices of IP addresses, then explore the role of rentals in sharing information about the value of IP address and assuring allocative efficiency. (JEL D47, D82, D85, L86)


Author(s):  
Bahaa Qasim Al-Musawi ◽  
Philip Branch

The Border Gateway Protocol (BGP) is an Internet routing protocol responsible for exchanging network reachability information between Autonomous Systems (ASes). Monitoring and mining BGP traffic are important aspects to understand and improve the stability of the Internet. However, identifying the characteristics of BGP traffic is much harder than it seems at a first glance where BGP traffic has been identified as complex, voluminous, and noisy. In this paper, we show that BGP traffic can be understood as an aggregation of oscillations of different frequencies from different ASes. Using linear and nonlinear statistical analysis, we show that BGP traffic shows recurrent behaviour. The source of this behaviour is unsynchronised periodic behaviour from a set of ASes.


2021 ◽  
Vol 10 (1) ◽  
pp. 8-11
Author(s):  
Michael Schapira

Combatting internet time shifters Arguably, the internet’s biggest security hole is the Border Gateway Protocol (BGP), which establishes routes between the organisational networks that make up the internet (e.g. Google, Facebook, Bank of England, Deutsche Telekom, AT&T). The insecurity of the internet’s routing system is constantly exploited to steal, monitor, and tamper with data traffic. Yet, despite many years of Herculean efforts, internet routing security remains a distant dream. The goal of the SIREN project is to propose and investigate novel paradigms for closing this security hole.


Sign in / Sign up

Export Citation Format

Share Document