Interindividual differences in general cognitive ability from age 18 to age 65years are extremely stable and strongly associated with working memory capacity

Intelligence ◽  
2015 ◽  
Vol 53 ◽  
pp. 59-64 ◽  
Author(s):  
Michael Rönnlund ◽  
Anna Sundström ◽  
Lars-Göran Nilsson
2013 ◽  
Vol 27 (2) ◽  
pp. 220-229 ◽  
Author(s):  
Melissa K. Johnson ◽  
Robert P. McMahon ◽  
Benjamin M. Robinson ◽  
Alexander N. Harvey ◽  
Britta Hahn ◽  
...  

2020 ◽  
Author(s):  
Jason S. Tsukahara ◽  
Randall W Engle

We found that individual differences in baseline pupil size correlated with fluid intelligence and working memory capacity. Larger pupil size was associated with higher cognitive ability. However, other researchers have not been able to replicate our 2016 finding – though they only measured working memory capacity and not fluid intelligence. In a reanalysis of Tsukahara et al. (2016) we show that reduced variability on baseline pupil size will result in a higher probability of obtaining smaller and non-significant correlations with working memory capacity. In two large-scale studies, we demonstrated that reduced variability in baseline pupil size values was due to the monitor being too bright. Additionally, fluid intelligence and working memory capacity did correlate with baseline pupil size except in the brightest lighting conditions. Overall, our findings demonstrated that the baseline pupil size – working memory capacity relationship was not as strong or robust as that with fluid intelligence. Our findings have strong methodological implications for researchers investigating individual differences in task-free or task-evoked pupil size. We conclude that fluid intelligence does correlate with baseline pupil size and that this is related to the functional organization of the resting-state brain through the locus coeruleus-norepinephrine system.


2020 ◽  
Vol 8 (2) ◽  
pp. 25 ◽  
Author(s):  
Matthew S. Welhaf ◽  
Bridget A. Smeekens ◽  
Matt E. Meier ◽  
Paul J. Silvia ◽  
Thomas R. Kwapil ◽  
...  

The worst performance rule (WPR) is a robust empirical finding reflecting that people’s worst task performance shows numerically stronger correlations with cognitive ability than their average or best performance. However, recent meta-analytic work has proposed this be renamed the “not-best performance” rule because mean and worst performance seem to predict cognitive ability to similar degrees, with both predicting ability better than best performance. We re-analyzed data from a previously published latent-variable study to test for worst vs. not-best performance across a variety of reaction time tasks in relation to two cognitive ability constructs: working memory capacity (WMC) and propensity for task-unrelated thought (TUT). Using two methods of assessing worst performance—ranked-binning and ex-Gaussian-modeling approaches—we found evidence for both the worst and not-best performance rules. WMC followed the not-best performance rule (correlating equivalently with mean and longest response times (RTs)) but TUT propensity followed the worst performance rule (correlating more strongly with longest RTs). Additionally, we created a mini-multiverse following different outlier exclusion rules to test the robustness of our findings; our findings remained stable across the different multiverse iterations. We provisionally conclude that the worst performance rule may only arise in relation to cognitive abilities closely linked to (failures of) sustained attention.


2015 ◽  
Vol 38 (4) ◽  
pp. 607-646 ◽  
Author(s):  
Ellen J. Serafini ◽  
Cristina Sanz

This study investigated whether the role of working memory capacity varies over the course of second language (L2) morphosyntactic development. Eighty-seven beginning, intermediate, and advanced university L2 Spanish learners completed two nonverbal tasks measuring executive function (EF) and phonological working memory (PWM) in their native language (English) and two tasks measuring knowledge of ten grammatical structures in Spanish at three points during and after a semester of instruction. Robust relationships between both working memory components, especially PWM, and L2 performance, emerged only for lower level learners, particularly at the start of instruction and 3.5 months later. Findings demonstrate that the facilitative effects of cognitive ability appear to lessen with increasing L2 proficiency and empirically support a developmental perspective of L2 learning.


2020 ◽  
Author(s):  
Benjamin Goecke ◽  
Florian Schmitz ◽  
Oliver Wilhelm

Performance in elementary cognitive tasks is moderately correlated with fluid intelligence and working memory capacity. These correlations are higher for more complex tasks, presumably due to increased demands on working memory capacity. In accordance with the binding hypothesis, which states that working memory capacity reflects the limit of a person’s ability to establish and maintain temporary bindings (e.g., relations between items or relations between items and their context), we manipulated binding requirements (i.e., 2, 4, and 6 relations) in three choice reaction time paradigms (i.e., two comparison tasks, two change-detection tasks, and two substitution tasks) measuring mental speed. Response time distributions of N = 115 participants were analyzed with the diffusion model. Higher binding requirements resulted in generally reduced efficiency of information processing, as indicated by lower drift rates. Additionally, we fitted bi-factor confirmatory factor analysis to the elementary cognitive tasks to separate basal speed and binding requirements of the employed tasks to quantify their specific contributions to working memory capacity, as measured by Recall-1-Back tasks. A latent factor capturing individual differences in binding was incrementally predictive of working memory capacity, over and above a general factor capturing speed. These results indicate that the theory-driven task complexity manipulation in terms of binding requirements moderated the relation of mental speed tasks with cognitive ability in the predicted way. We conclude that binding requirements and, therefore, demands on working memory capacity offer a satisfactory account of task complexity that accounts for a large portion of individual differences in ability.


2000 ◽  
Vol 29 (6) ◽  
pp. 1017-1045 ◽  
Author(s):  
K. Oberauer ◽  
H.-M. Süß ◽  
R. Schulze ◽  
O. Wilhelm ◽  
W.W. Wittmann

2016 ◽  
Vol 37 (4) ◽  
pp. 239-249
Author(s):  
Xuezhu Ren ◽  
Tengfei Wang ◽  
Karl Schweizer ◽  
Jing Guo

Abstract. Although attention control accounts for a unique portion of the variance in working memory capacity (WMC), the way in which attention control contributes to WMC has not been thoroughly specified. The current work focused on fractionating attention control into distinctly different executive processes and examined to what extent key processes of attention control including updating, shifting, and prepotent response inhibition were related to WMC and whether these relations were different. A number of 216 university students completed experimental tasks of attention control and two measures of WMC. Latent variable analyses were employed for separating and modeling each process and their effects on WMC. The results showed that both the accuracy of updating and shifting were substantially related to WMC while the link from the accuracy of inhibition to WMC was insignificant; on the other hand, only the speed of shifting had a moderate effect on WMC while neither the speed of updating nor the speed of inhibition showed significant effect on WMC. The results suggest that these key processes of attention control exhibit differential effects on individual differences in WMC. The approach that combined experimental manipulations and statistical modeling constitutes a promising way of investigating cognitive processes.


Author(s):  
Wim De Neys ◽  
Niki Verschueren

Abstract. The Monty Hall Dilemma (MHD) is an intriguing example of the discrepancy between people’s intuitions and normative reasoning. This study examines whether the notorious difficulty of the MHD is associated with limitations in working memory resources. Experiment 1 and 2 examined the link between MHD reasoning and working memory capacity. Experiment 3 tested the role of working memory experimentally by burdening the executive resources with a secondary task. Results showed that participants who solved the MHD correctly had a significantly higher working memory capacity than erroneous responders. Correct responding also decreased under secondary task load. Findings indicate that working memory capacity plays a key role in overcoming salient intuitions and selecting the correct switching response during MHD reasoning.


Sign in / Sign up

Export Citation Format

Share Document