Determination of all feasible robust PID controllers for open-loop unstable plus time delay processes with gain margin and phase margin specifications

2014 ◽  
Vol 53 (2) ◽  
pp. 628-646 ◽  
Author(s):  
Yuan-Jay Wang
Author(s):  
Xiaochuan Ma ◽  
Jie Yan ◽  
Wenxing Fu ◽  
Kang Chen

Aiming at the static unstable Hypersonic vehicle, a method for designing H∞ autopilot to satisfy gain margin and phase margin is proposed. Structured H∞ synthesis is used to synthesize the autopilot under the fixed structure. The gain margin and phase margin were constrained by using H∞ norm of the complementary of the scaled plant. The requirement for the gain margin and phase margin is represented by the distance between the open loop Nyquist curve and the circle that represents the gain margin and phase margin in the complex plane. The distance is adjusted by tuning the parameter of performance specifications automatically to reduce the conservatism of the controller. The present method is applicable to both static stable vehicle and static unstable vehicle, and a three loops acceleration tracking autopilot is design. The numerical simulations have demonstrated that the autopilot satisfys the performance specifications, gain margin and phase margin simultaneously.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 140
Author(s):  
Juan Garrido ◽  
Mario L. Ruz ◽  
Fernando Morilla ◽  
Francisco Vázquez

Multiloop proportional-integral-derivative (PID) controllers are widely used for controlling multivariable processes due to their understandability, simplicity and other practical advantages. The main difficulty of the methodologies using this approach is the fact that the controllers of different loops interact each other. Thus, the knowledge of the controllers in the other loops is necessary for the evaluation of one loop. This work proposes an iterative design methodology of multiloop PID controllers for stable multivariable systems. The controllers in each step are tuned using single-input single-output (SISO) methods for the corresponding effective open loop process (EOP), which considers the interaction of the other loops closed with the controllers of the previous step. The methodology uses a frequency response matrix representation of the system to avoid process approximations in the case of elements with time delays or complicated EOPs. Consequently, different robustness margins on the frequency domain are proposed as specifications: phase margin, gain margin, phase and gain margin combination, sensitivity margin and linear margin. For each case, a PID tuning method is described and detailed for the iterative methodology. The proposals are exemplified with two simulations systems where the obtained performance is similar or better than that achieved by other authors.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

AbstractThe processes which contain at least one pole at the origin are known as integrating systems. The process output varies continuously with time at certain speed when they are disturbed from the equilibrium operating point by any environment disturbance/change in input conditions and thus they are considered as non-self-regulating. In most occasions this phenomenon is very disadvantageous and dangerous. Therefore it is always a challenging task to efficient control such kind of processes. Depending upon the number of poles present at the origin and also on the location of other poles in transfer function different types of integrating systems exist. Stable first order plus time delay systems with an integrator (FOPTDI), unstable first order plus time delay systems with an integrator (UFOPTDI), pure integrating plus time delay (PIPTD) systems and double integrating plus time delay (DIPTD) systems are the classifications of integrating systems. By using a well-controlled positioning stage the advances in micro and nano metrology are inevitable in order satisfy the need to maintain the product quality of miniaturized components. As proportional-integral-derivative (PID) controllers are very simple to tune, easy to understand and robust in control they are widely implemented in many of the chemical process industries. In industries this PID control is the most common control algorithm used and also this has been universally accepted in industrial control. In a wide range of operating conditions the popularity of PID controllers can be attributed partly to their robust performance and partly to their functional simplicity which allows engineers to operate them in a simple, straight forward manner. One of the accepted control algorithms by the process industries is the PID control. However, in order to accomplish high precision positioning performance and to build a robust controller tuning of the key parameters in a PID controller is most inevitable. Therefore, for PID controllers many tuning methods are proposed. the main factors that lead to lifetime reduction in gain loss of PID parameters are described in This paper and also the main methods used for gain tuning based on optimization approach analysis is reviewed. The advantages and disadvantages of each one are outlined and some future directions for research are analyzed.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 328
Author(s):  
Mikulas Huba ◽  
Damir Vrancic

The paper investigates and explains a new simple analytical tuning of proportional-integrative-derivative (PID) controllers. In combination with nth order series binomial low-pass filters, they are to be applied to the double-integrator-plus-dead-time (DIPDT) plant models. With respect to the use of derivatives, it should be understood that the design of appropriate filters is not only an implementation problem. Rather, it is also critical for the resulting performance, robustness and noise attenuation. To simplify controller commissioning, integrated tuning procedures (ITPs) based on three different concepts of filter delay equivalences are presented. For simultaneous determination of controller + filter parameters, the design uses the multiple real dominant poles method. The excellent control loop performance in a noisy environment and the specific advantages and disadvantages of the resulting equivalences are discussed. The results show that none of them is globally optimal. Each of them is advantageous only for certain noise levels and the desired degree of their filtering.


Author(s):  
Tooran Emami ◽  
John M. Watkins

A graphical technique for finding all proportional integral derivative (PID) controllers that stabilize a given single-input-single-output (SISO) linear time-invariant (LTI) system of any order system with time delay has been solved. In this paper a method is introduced that finds all PID controllers that also satisfy an H∞ complementary sensitivity constraint. This problem can be solved by finding all PID controllers that simultaneously stabilize the closed-loop characteristic polynomial and satisfy constraints defined by a set of related complex polynomials. A key advantage of this procedure is the fact that it does not require the plant transfer function, only its frequency response.


Sign in / Sign up

Export Citation Format

Share Document