scholarly journals Genome-wide Screen for Culture Adaptation and Tumorigenicity-Related Genes in Human Pluripotent Stem Cells

iScience ◽  
2019 ◽  
Vol 11 ◽  
pp. 398-408 ◽  
Author(s):  
Uri Weissbein ◽  
Mordecai Peretz ◽  
Omer Plotnik ◽  
Ofra Yanuka ◽  
Ido Sagi ◽  
...  
2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Michael James Hitchler ◽  
Chendhore Veerappan ◽  
Joseph Aman ◽  
Victoria Fox ◽  
Cynthia Cuningham ◽  
...  

Development ◽  
2021 ◽  
Author(s):  
Juli Liu ◽  
Sheng Liu ◽  
Lei Han ◽  
Yi Sheng ◽  
Yucheng Zhang ◽  
...  

Polycomb Repressive Complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of RNA- PRC2 interaction in human cardiogenesis remains elusive. Here, we found human-specific Heart Brake LncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss-of-JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. Additionally, ChIP-seq revealed reduced EED-occupancy on 62 overlapped cardiogenic genes in HBL1−/- and JARID2−/- hPSCs, indicating the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurred, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved “microRNA-1-JARID2” axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis.


2019 ◽  
Author(s):  
Dane Z. Hazelbaker ◽  
Amanda Beccard ◽  
Patrizia Mazzucato ◽  
Gabriella Angelini ◽  
Angelica Messana ◽  
...  

ABSTRACTCRISPR-Cas9-mediated gene interference (CRISPRi) and activation (CRISPRa) approaches hold promise for functional genomic studies and genome-wide screens in human pluripotent stem cells (hPSCs). However, in contrast to CRISPR-Cas9 nuclease approaches, the efficiency of CRISPRi/a depends on continued expression of the dead Cas9 (dCas9) effector and guide RNA (gRNA), which can vary substantially depending on transgene design and delivery. Here, we design new fluorescently labeledpiggyBac(PB) vectors to deliver robust and stable expression of multiplexed gRNAs. In addition, we generate hPSC lines harboring AAVS1-integrated, inducible and fluorescent dCas9-KRAB and dCas9-VPR transgenes to allow for accurate quantification and tracking of cells that express both the dCas9 effectors and gRNAs. We then employ these systems to target theTCF4gene and conduct a rigorous assessment of expression levels of the dCas9 effectors, gRNAs and targeted gene. Collectively, these data provide proof-of-principle application of a stable, multiplexed PB gRNA delivery system that can be widely exploited to further enable genome engineering studies in hPSCs. Paired with diverse CRISPR tools including our dual fluorescence CRISPRi/a cell lines, this system would facilitate functional dissection of individual genes and pathways as well as larger-scale screens for studies of development and disease.


2017 ◽  
Author(s):  
Robert J. Ihry ◽  
Kathleen A. Worringer ◽  
Max R. Salick ◽  
Elizabeth Frias ◽  
Daniel Ho ◽  
...  

SUMMARYCRISPR/Cas9 has revolutionized our ability to engineer genomes and to conduct genome-wide screens in human cells. While some cell types are easily modified with Cas9, human pluripotent stem cells (hPSCs) poorly tolerate Cas9 and are difficult to engineer. Using a stable Cas9 cell line or transient delivery of ribonucleoproteins (RNPs) we achieved an average insertion or deletion efficiency greater than 80%. This high efficiency made it apparent that double strand breaks (DSBs) induced by Cas9 are toxic and kill most treated hPSCs. Cas9 toxicity creates an obstacle to the high-throughput use CRISPR/Cas9 for genome-engineering and screening in hPSCs. We demonstrated the toxic response istp53-dependent and the toxic effect oftp53severely reduces the efficiency of precise genome-engineering in hPSCs. Our results highlight that CRISPR-based therapies derived from hPSCs should proceed with caution. Following engineering, it is critical to monitor fortp53function, especially in hPSCs which spontaneously acquiretp53mutations.


Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
S Ulrich ◽  
S Weinreich ◽  
R Haller ◽  
S Menke ◽  
R Olmer ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 326-LB
Author(s):  
LARRY SAI WENG LOO ◽  
ADRIAN TEO ◽  
SOUMITA GHOSH ◽  
ANDREAS ALVIN PURNOMO SOETEDJO ◽  
LINH NGUYEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document