Failure mechanisms of small-scale reinforced concrete beams impacted by soft missiles

Structures ◽  
2019 ◽  
Vol 20 ◽  
pp. 620-634 ◽  
Author(s):  
Oscar A. Ardila-Giraldo ◽  
Santiago Pujol
2003 ◽  
Vol 30 (6) ◽  
pp. 1081-1088 ◽  
Author(s):  
Mark F Green ◽  
Aaron J.S Dent ◽  
Luke A Bisby

Externally bonded fibre reinforced polymer (FRP) plates and sheets for strengthening and rehabilitating existing reinforced concrete structures have recently received a great deal of attention within the civil engineering community. Many tests have shown the benefits of FRP, but more information is required on their behaviour in cold regions. Twenty-seven small-scale concrete beams (100 mm × 150 mm × 1220 mm) were strengthened with FRP in flexure (and in some cases also in shear), subjected to up to 200 freeze–thaw cycles, and tested to failure in four-point bending. Test results were compared with those predicted by theoretical models and reasonable agreement between the tests and the models was obtained. Current design guidelines for FRP-strengthened beams were compared against the test data and were found to be adequate for the artificially aged beams. The test data also indicated that no significant damage to the glass or carbon FRP-strengthened concrete beams had occurred because of freeze–thaw cycling.Key words: concrete, rehabilitation, fibre reinforced polymers, FRP, beams, freeze–thaw, cold region engineering, flexure, external strengthening.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1178
Author(s):  
Fahed Alrshoudi

Textile-reinforced concrete (TRC) as a novel high-performance composite material can be used as a strengthening material and component bearing load alone. The flexural performance of TRC beams strengthened with textile reinforcement such as carbon tows was experimentally examined and associated with those of steel-reinforced concrete (SRC) beams. Through four-point bending tests, this research explores the effects of textile layers and dosages of short textile fibre on the flexural strength of concrete beams. A total of 64 prism samples of size 100 mm × 100 mm × 500 mm were made, flexure-strengthened, and tested to evaluate various characteristics and the efficiency of TRC versus SRC beams. TRC beams performed exceptionally well as supporting material in enhancing concrete’s flexural capacity; in addition, TRC’s average ultimate load effectiveness was up to 56% than that of SRC specimens. Furthermore, the maximum deflection was about 37% lesser than SRC beams. The results showed that by increasing the number of layers, the TRC’s effectiveness was significantly increased, and the failure mode became more ductile.


2016 ◽  
Vol 718 ◽  
pp. 191-195
Author(s):  
Pattanapong Topark-Ngarm ◽  
Trinh Cao ◽  
Prinya Chindaprasirt ◽  
Vanchai Sata

The small-scale reinforced high calcium fly ash geopolymer concrete beams with short shear span were studied in this research. Reinforced concrete beams with 150x150 mm2 cross-section and 530 mm in length were used for tests. Conventional reinforced Portland cement concrete beams (RC) with designed concrete compressive strengths of 35, 45 and 55 MPa and high-calcium fly ash geopolymer reinforced concrete beams with similar strength were tested. The geopolymer concretes (GC) were designed with alkaline liquid to fly ash ratio (L/A) of 0.5, sodium silicate to sodium hydroxide (S/H) ratio of 1.0 and two sodium hydroxide (NaOH) concentrations of 10M and 15M. Two temperatures of 23 and 60 °C were used for curing geopolymer reinforced concrete (GRC) beams for 24 hr, while RC beams were moist cured at 23 °C. The maximum sustained moment and shear were compared with the predicted values from the RC-design standard. The results showed that the failure patterns of small GRC beams were different to that of normal RC beam. The small GRC beams failed in flexure whereas the similar small RC beams failed in shear. However, the GRC beams were able to sustain higher shear and moment than the values obtained from the design code. The different in failure mechanism was probably due to the different in modulus of elasticity of geopolymer concrete and normal concrete.


Sign in / Sign up

Export Citation Format

Share Document