Experimental and numerical study on the bending performance of an aluminium alloy flower-gusset composite joint

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 2475-2486
Author(s):  
Wang Gang ◽  
Zhao Caiqi ◽  
Ma Jun
2021 ◽  
Vol 1058 (1) ◽  
pp. 012011
Author(s):  
Evangelia Georgantzia ◽  
Michaela Gkantou ◽  
George S. Kamaris ◽  
Kunal Kansara ◽  
Khalid Hashim

2021 ◽  
Vol 1058 (1) ◽  
pp. 012010
Author(s):  
Shafayat Bin Ali ◽  
George S. Kamaris ◽  
Michaela Gkantou ◽  
Kunal Kansara ◽  
Khalid Hashim

2004 ◽  
Vol 46 (12) ◽  
pp. 1727-1746 ◽  
Author(s):  
A. Kulkarni ◽  
P. Biswas ◽  
R. Narasimhan ◽  
Alan A. Luo ◽  
Raj K. Mishra ◽  
...  

2020 ◽  
Vol 50 ◽  
pp. 37-44
Author(s):  
Torgeir Welo ◽  
Jun Ma ◽  
Jørgen Blindheim ◽  
Taekwang Ha ◽  
Geir Ringen

2007 ◽  
Vol 15 (7) ◽  
pp. 747-772 ◽  
Author(s):  
O S Hopperstad ◽  
T Børvik ◽  
T Berstad ◽  
O-G Lademo ◽  
A Benallal

2017 ◽  
Vol 21 (10) ◽  
pp. 1542-1552 ◽  
Author(s):  
Shiming Chen ◽  
Junming Jiang ◽  
Liangjiu Jia

An innovative beam-to-column composite joint with adapter-bracket was proposed and its behavior was investigated through finite element analysis. The special adapter-bracket is to facilitate the assembly of the steel box beam and the concrete-filled steel tube column through high-strength blind bolts. In the adapter-bracket, two endplates are welded to the beam and bolted to the column, respectively. First, two finite element models of the bolted extended endplate joint were developed in ABAQUS and validated by available experimental results. Then, based on modified models, parametric analyses were conducted to evaluate the novel joint performance, in terms of the initial stiffness, rotation capacity, moment capacity, failure mode, and joint classification. The variables included flange thickness, endplate thickness, and bolt size. Results demonstrated that the joint behavior was significantly affected by the flange thickness, the endplate-A thickness, and bolt size while slightly influenced by the endplate-B thickness. Additionally, these joints had favorable rotation and moment capacity.


2014 ◽  
Vol 629 ◽  
pp. 498-502 ◽  
Author(s):  
K.A. Kamarudin ◽  
Al Emran Ismail

This paper explains the utilisation of finite element model to analyse the ballistic limit of aluminium alloy 7075-T6 impacted by 8.33 g with 12.5 mm radius rigid spherical projectiles. This numerical study was compared with the results obtained experimentally. During impact, the targets were subjected to either non- or uniaxial- pretension and the projectile travelled horizontally to the target. It was observed that pretensioned targets were more vulnerable, which reduced the ballistic limit. The existence of harmful failures owing to pretension impact was ascertained and compared with the non-pretension targets.


Author(s):  
Kaustav Bakshi

The review of recent literature shows that the bending performances of transversely loaded laminated composite singly curved stiffened surfaces are not studied in detail using the geometrically nonlinear strains. The present paper aims to fill that void and proposes an isoparametric C° finite element formulation combining von-Karman nonlinearity and Sanders’ first approximation theory. The curved surfaces are simulated using nonlinear strains. The stiffeners are formulated using geometrically linear and nonlinear strains. The correctness of the proposed approach is confirmed through solution of benchmark problems. The relative performances of stiffened curved surfaces in terms of maximum transverse displacements are studied for industrially important parametric variations like boundary conditions, laminations, stacking sequences, and number, orientations, eccentricities, and depth of stiffeners. The results are critically discussed and it is concluded that the clamped 0°/90°/0° shell with curved stiffeners ( y-stiffener) located below the mid-surface shows the greatest bending stiffness. The nonlinear approach is essential for both shell and stiffener for correct prediction of the transverse displacements. The relatively simpler linear approach can be considered for single x-stiffener only.


Sign in / Sign up

Export Citation Format

Share Document