Modelling High Velocity Impact on Aluminium Alloy 7075-T6 under Axial Pretension

2014 ◽  
Vol 629 ◽  
pp. 498-502 ◽  
Author(s):  
K.A. Kamarudin ◽  
Al Emran Ismail

This paper explains the utilisation of finite element model to analyse the ballistic limit of aluminium alloy 7075-T6 impacted by 8.33 g with 12.5 mm radius rigid spherical projectiles. This numerical study was compared with the results obtained experimentally. During impact, the targets were subjected to either non- or uniaxial- pretension and the projectile travelled horizontally to the target. It was observed that pretensioned targets were more vulnerable, which reduced the ballistic limit. The existence of harmful failures owing to pretension impact was ascertained and compared with the non-pretension targets.

2014 ◽  
Vol 553 ◽  
pp. 745-750 ◽  
Author(s):  
Cheng Jun Liu ◽  
Yi Xia Zhang ◽  
Qing Hua Qin ◽  
Rikard Heslehurst

A finite element model is developed in this paper to simulate the perforation of aluminium foam sandwich panels subjected to high velocity impact using the commercial finite element analysis software LS-DYNA. The aluminum foam core is governed by the material model of crushable foam materials, while both aluminium alloy face sheets are modeled with the simplified Johnson-Cook material model. A non-linear cohesive contact model is employed to simulate failure between adjacent layers, and an erosion contact model is used to define contact between bullets and panels. All components in the model are meshed with 3D solid element SOLID 164. The developed finite element model is used to simulate the dynamic response of an aluminium foam sandwich panel subjected to projectile impact at velocity ranging from 76 m/s to 187m/s. The relationship between initial velocity and exit velocity of the projectile obtained from numerical modelling agrees well with that obtained from experimental study, demonstrating the effectiveness of the developed finite element model in simulating perforation of sandwich panels subjected to high velocity impact.


Author(s):  
Shivdayal Patel ◽  
Suhail Ahmad ◽  
Puneet Mahajan

The safety predictions of composite armors require a probabilistic analysis to take into consideration scatters in the material properties and initial velocity. Damage initiation laws are used to account for matrix and fiber failure during high-velocity impact. A three-dimensional (3D) stochastic finite-element analysis of laminated composite plates under impact is performed to determine the probability of failure (Pf). The objective is to achieve the safest design of lightweight composite through the most efficient ply arrangement of S2 glass epoxy. Realistic damage initiation models are implemented. The Pf is obtained through the Gaussian process response surface method (GPRSM). The antisymmetric cross-ply arrangement is found to be the safest based on maximum stress and Yen and Hashin criteria simultaneously. Sensitivity analysis is performed to achieve the target reliability.


2019 ◽  
Vol 14 ◽  
pp. 155892501988640
Author(s):  
Xiao-Shun Zhao ◽  
He Jia ◽  
Zhihong Sun ◽  
Li Yu

At present, most space inflatable structures are composed of flexible inflatable fabrics with complex undevelopable surfaces. It is difficult to establish a multi-dimensional folding model for this type of structure. To solve this key technical problem, the motion folding method is proposed in this study. First, a finite element model with an original three-dimensional surface was flattened with a fluid structure interaction algorithm. Second, the flattened surface was folded based on the prescribed motion of the node groups, and the final folding model was obtained. The fold modeling process of this methodology was consistent with the actual folding processes. Because the mapping relationship between the original finite element model and the final folding model was unchanged, the initial stress was used to modify the model errors during folding process of motion folding method. The folding model of an inflatable aerodynamic decelerator, which could not be established using existing folding methods, was established by using motion folding method. The folding model of the inflatable aerodynamic decelerator showed that the motion folding method could achieve multi-dimensional folding and a high spatial compression rate. The stability and regularity of the inflatable aerodynamic decelerator numerical inflation process and the consistency of the inflated and design shapes indicated the reliability, applicability, and feasibility of the motion folding method. The study results could provide a reference for modeling complex inflatable fabrics and promote the numerical study of inflatable fabrics.


2020 ◽  
Vol 142 ◽  
pp. 103593
Author(s):  
L. Alonso ◽  
F. Martínez-Hergueta ◽  
D. Garcia-Gonzalez ◽  
C. Navarro ◽  
S.K. García-Castillo ◽  
...  

2016 ◽  
Vol 136 ◽  
pp. 162-168 ◽  
Author(s):  
Milan Žmindák ◽  
Zoran Pelagić ◽  
Peter Pastorek ◽  
Martin Močilan ◽  
Martin Vybošťok

Sign in / Sign up

Export Citation Format

Share Document