Consistent one-bay frame simplified model for efficient seismic evaluation of steel moment frame buildings with equal and unequal bay lengths

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3345-3362
Author(s):  
Mojtaba Hosseini ◽  
Hossein Ahmadie Amiri ◽  
Homayoon E. Estekanchi
2003 ◽  
Vol 19 (2) ◽  
pp. 365-384 ◽  
Author(s):  
Charles A. Kircher

This paper describes procedures that may be used by experienced structural engineers to develop earthquake damage and related loss functions for welded steel moment-frame (WSMF) buildings. The damage and loss functions are based on and compatible with the loss estimation methods of HAZUS, a technology developed by Federal Emergency Management Agency (FEMA) for assessing regional impacts of earthquakes. The loss estimation procedures were developed by the SAC Steel Program as described in SAC Joint Venture Topical Report SAC/BD-99/13. These procedures form the basis for Appendix B of FEMA-351, Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings. The procedures for developing damage and loss functions for WSMF building response are general in nature and applicable to WSMF buildings designed to different seismic criteria and having different connection details. Default values of damage and loss function parameters are provided for typical 3-story, 9-story, and 20-story WSMF buildings, designed for Los Angeles, Seattle, or Boston seismic criteria and having pre-Northridge, post-Northridge, or damaged pre-Northridge connection conditions.


2003 ◽  
Vol 19 (2) ◽  
pp. 317-334 ◽  
Author(s):  
John D. Hooper

In July 2000, the SAC Joint Venture (a joint venture of the Structural Engineers Association of California, the Applied Technology Council, and California Universities for Research in Earthquake Engineering) prepared a series of recommendations regarding welded steel moment-frame design, evaluation, and upgrade procedures. FEMA-351, Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings, was developed to evaluate the probable performance of existing steel moment-frame buildings in future earthquakes and to provide guidance or upgrading these buildings. The procedures introduced in FEMA-351 allow the determination of the level of confidence a structure will be able to achieve based on a specified performance objective, using simplified analytical methods. Simplified procedures for estimating the probable post-earthquake repair costs and nonstructural damage, based on the losses incurred in the 1994 Northridge earthquake, are presented as well. This paper provides a brief chapter-by-chapter overview of the information contained in FEMA-351 and emphasizes the performance evaluation procedures by stepping through the process using an example building.


Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher Foley

The chapter provides an overview of optimal structural design procedures for seismic performance. Structural analysis and design for earthquake effects is an evolving area of science; many design philosophies and concepts have been proposed, investigated, and practiced in the past three decades. The chapter briefly introduces some of these advancements first, as their understanding is essential in a successful application of optimal seismic design for performance. An emerging trend in seismic design for optimal performance is speculated next. Finally, a state-of-the-art application of evolutionary algorithms in probabilistic performance-based seismic design of steel moment frame buildings is described through an example. In order to follow the concepts of this chapter, the reader is assumed equipped with a basic knowledge of structural mechanics, dynamics of structures, and design optimizations.


2003 ◽  
Vol 19 (2) ◽  
pp. 309-315
Author(s):  
Robert E. Shaw

FEMA-353, Recommended Specifications and Quality Assurance Guidelines for Steel Moment-Frame Construction for Seismic Applications, contains numerous provisions related to the materials, details, quality, and inspection of steel moment-frame buildings in seismic regions. These provisions continue to evolve as industry standards and practices are reviewed, modified, and adopted to meet the need for good seismic performance. Those writing project specifications must remain current with new industry developments and standards.


Sign in / Sign up

Export Citation Format

Share Document