Experimental research and finite element analysis on the seismic behavior of CFRP-strengthened severely seismic-damaged RC columns

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3968-3981
Author(s):  
Jian Yang ◽  
Shuting Liang ◽  
Xiaojun Zhu ◽  
Longji Dang ◽  
Jialei Wang ◽  
...  
2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


2014 ◽  
Vol 936 ◽  
pp. 1414-1418
Author(s):  
Lin Chun Zhang

In order to estimate seismic behavior of LYTAG concrete, the seismic behavior of ordinary concrete have been studied in comparison with LYTAG concrete in this article. At first it discusses the advantages of LYTAG concrete, and then it draws following conclusions through the contrast tests of LYTAG concrete and ordinary concrete and the method of finite element analysis. The seismic performance of Lytag concrete is better than that of ordinary concrete. LYTAG concrete has better social and economic benefits than ordinary concrete from the aspects of seismic fortification.


2014 ◽  
Vol 578-579 ◽  
pp. 695-698
Author(s):  
Xi Le Li ◽  
Li Hua Niu

Based on the model experiment on seismic behavior of a 1-span, 2-story concrete-filled rectangular steel tubal (CFRST) frame under lateral cyclic loads, a 3-D nonlinear finite element model of concrete-filled rectangular steel tubular frame is proposed in the paper. Compared with the experimental hysteresis curve, the computational results are found to be accurate, which shows that this model proposed in the paper can be applied in structure analysis of concrete-filled rectangular tubular frames. So the model was used in the finite element analysis of concrete-filled rectangular frame with different axial load level. Compared the computational displacement envelop curves, it concludes that the ductility and bearing capacity of CFRST frames reduces with the increasing axial load level.


2020 ◽  
Vol 198 ◽  
pp. 03012
Author(s):  
Zhenghui Qi ◽  
Xiaotong Peng ◽  
Jie Man ◽  
Chen Lin ◽  
Wenxu Duan

A new steel special-shaped lattice column (SSLC) was proposed, which can be used in prefabricated steel structure residence. The finite element models of four SSLC with different cross-section (L-shaped, T1-shaped, T2-shaped and X-shaped) were established under cyclic loading by using ABAQUS, in which the strength, lateral resist capacity and hysteretic behavior were analyzed. The results indicate that SSLC has adequate strength, stiffness and safety redundancy. Among the four SSLC, the SSLC with X-shaped has the best structural performance and seismic behavior.


Sign in / Sign up

Export Citation Format

Share Document