scholarly journals Design Method and Finite Element Analysis of a New Prefabricated Steel Special-shaped Lattice Column

2020 ◽  
Vol 198 ◽  
pp. 03012
Author(s):  
Zhenghui Qi ◽  
Xiaotong Peng ◽  
Jie Man ◽  
Chen Lin ◽  
Wenxu Duan

A new steel special-shaped lattice column (SSLC) was proposed, which can be used in prefabricated steel structure residence. The finite element models of four SSLC with different cross-section (L-shaped, T1-shaped, T2-shaped and X-shaped) were established under cyclic loading by using ABAQUS, in which the strength, lateral resist capacity and hysteretic behavior were analyzed. The results indicate that SSLC has adequate strength, stiffness and safety redundancy. Among the four SSLC, the SSLC with X-shaped has the best structural performance and seismic behavior.

2011 ◽  
Vol 05 (03) ◽  
pp. 283-296 ◽  
Author(s):  
X. NIE ◽  
J. S. FAN ◽  
Y. J. SHI

The composite steel–concrete rigid frame bridge is composed of steel or composite girders connecting rigidly to RC piers, and has advantages of lower maintenance costs, faster construction, and higher resistance and ductility during an earthquake. In this paper, a new type of steel–concrete composite rigid connection is developed and studied by finite element analysis. The comparison with other types of connections shows that this new type of connection has a good structural performance from the confining of concrete by steel and preventing the buckling of steel by concrete.


2011 ◽  
Vol 94-96 ◽  
pp. 923-928
Author(s):  
Yong Jiu Shi ◽  
Lei Wang ◽  
Yuan Qing Wang ◽  
Jian Suo Ma ◽  
Run Shan Bai

The combined connection with welds and bolds can be widely used in reinforcing the joint in steel structure. In this paper, proposed design method of combined connection with bolts and longitudinal welds was given based on the tests and finite element analysis (FEA). The method considers the effect of the strength ratio between bolts and welds. The safety and reliability of the method were verified by FEA and comparison with other design method. The design method can contribute to the promotion of the application of the combined connections.


2012 ◽  
Vol 166-169 ◽  
pp. 1760-1764
Author(s):  
Song Yan Wang ◽  
Cheng Cheng Du ◽  
Jie Zhu

Due to the particularity, the reinforcement and reconstruction of steel structures should adopt a unique way. Combined with practical engineering, this paper introduces the program of Laizhou department store building reinforcement project. According to the specific requirements of the reinforcement and reconstruction, we analyze the original structure, introduce structure designs of the adding three layers as well as the reinforcement of bottom two layers, which makes construction more convenient and faster, and achieves the purpose of economic and appliance. The reinforcement of steel columns decide the period and cost. This paper expounds the reinforcement method of steel columns, and obtains the force of the bolt through the finite element analysis.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


2011 ◽  
Vol 346 ◽  
pp. 379-384
Author(s):  
Shu Bo Xu ◽  
Yang Xi ◽  
Cai Nian Jing ◽  
Ke Ke Sun

The use of finite element theory and modal analysis theory, the structure of the machine static and dynamic performance analysis and prediction using optimal design method for optimization, the new machine to improve job performance, improve processing accuracy, shorten the development cycle and enhance the competitiveness of products is very important. Selected for three-dimensional CAD modeling software-UG NX4.0 and finite element analysis software-ANSYS to set up the structure of the beam finite element model, and then post on the overall structure of the static and dynamic characteristic analysis, on the basis of optimized static and dynamic performance is more superior double wall structure of the beam. And by changing the wall thickness and the thickness of the inner wall, as well as the reinforcement plate thickness overall sensitivity analysis shows that changes in these three parameters on the dynamic characteristics of post impact. Application of topology optimization methods, determine the optimal structure of the beam ultimately.


2013 ◽  
Vol 823 ◽  
pp. 247-250
Author(s):  
Jie Dong ◽  
Wen Ming Cheng ◽  
Yang Zhi Ren ◽  
Yu Pu Wang

Because of the huge lifting weight and complex structure of large-tonnage gantry crane and in order to effectively design and review it, this paper aims to carry out a research on its structural performance based on the method of theoretical calculation and finite element analysis. During the early period of design, the method of theoretical calculations is adopted, and after specific design it comes the finite element analysis, so as to get the results of analysis under a variety of operating conditions, which illustrates that the structural design and review of large-tonnage gantry crane based on theoretical calculations and finite element are feasible, and also verifies that the method of finite element is an effective way to find a real dangerous cross-section, thus providing the basis for the design and manufacture of the crane structure.


2014 ◽  
Vol 986-987 ◽  
pp. 927-930
Author(s):  
Yi Zhu ◽  
Bo Li ◽  
Hao Wang ◽  
Kun Li

Put the finite element analysis of line tower coupling modeling to the collapse of a 110 kV line straight-line tower, study the effect of strong wind on transmission tower and wire. The results show that under the action of strong wind, the material specification selected by the part of the rods on the type of tower is lower, cross section is smaller, the principal material of tower will be instable and flexional under the compression, resulting in tower collapsed.


Author(s):  
Naveen Viswanatha ◽  
Mark Avis ◽  
Moji Moatamedi

The surround and the spider of the loudspeaker suspension are modelled in ANSYS to carry out finite element analysis. The displacement dependent nonlinearities arising from the suspension are studied and the material and geometric effects leading to the nonlinearities are parameterised. The ANSYS models are simulated to be excited by a sinusoidal load and the results are evaluated by comparison with the results obtained by a physical model. The paper illustrates how practical models can be analysed using cost effective finite element models and also the extension of the models to experiment on various parameters, like changing the geometry for optimisation, by computer simulation.


Sign in / Sign up

Export Citation Format

Share Document