scholarly journals GW25-e0716 Different influences of Single and Dual-chamber Pacing on Brachial Blood Pressure, Central Aortic Pressure and Augmentation Index

2014 ◽  
Vol 64 (16) ◽  
pp. C157
Author(s):  
Miao Shuai ◽  
Ye Lan ◽  
Yan Zhehui ◽  
Li Guangping
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
A Gurevich ◽  
I Emelyanov ◽  
N Zherdev ◽  
D Chernova ◽  
A Chernov ◽  
...  

Abstract Background The presence of aortic aneurysm can alters pulse wave propagation and reflection, causing changes in central aortic pressure and pulse pressure amplification (PPA) between the aorta and the brachial artery that might be associated with unfavorable hemodynamic effects for the central arteries and the heart. However, the impact of the location of the aneurysm and increase of the aortic diameter on central blood pressure (CBP) is not fully understood. Objective To investigate central aortic pressure and PPA regarding to association with arterial stiffness and aortic diameter in patients with ascending aortic aneurysm (AA), descending thoracic and abdominal aortic aneurysm (TAA and AAA). Methods 122 patients (96 males, 65±11 years) with aortic aneurysm were enrolled before aortic repair. The parameters of the aorta were evaluated by MSCT angiography: 44 patients (30 males, 55±13 years) had AA (the maximum diameter: 59.9±14.2 mm), 13 patients (11 males, 62±11 years) had TAA (the maximum diameter: 62.8±8.0 mm) and 65 patients (54 males, 69±8 years) had AAA (the maximum diameter: 52.3±17.2 mm). Brachial blood pressure (BBP) was measured by OMRON. CBP, augmentation index (AIx), carotid-femoral pulse wave velocity (PWV) were assessed by SphygmoCor. PPA was calculated as a difference between the values of central and brachial pulse pressure (CPP and BPP). Results Patients of the three groups did not differ in BPP (AA: 59.2±17.6; TAA 56.8±12.8; AAA: 59.3±11.4 mm Hg; P=0.5). Intergroup comparison revealed a difference in CPP between the three patients groups: CPP was higher in patients with AA and AAA, lower in patients with TAA (AA: 50.3±16.2; TAA 43.8±10.8; AAA: 50.0±11.2 mm Hg; P=0.05). PPA was lower in patients with AA and AAA than in patients with TAA (9.6±6.7 and 9.3±4.2 vs. 13.0±6.5 mm Hg; P=0.05 and P=0.04, respectively). IAx was higher in patients with AA and AAA than in patients with TAA (25.2±8.1 and 27.6±8.2 vs. 17.2±8.2 mm Hg; P=0.008 and P=0.001, respectively). A decrease of PPA across all patients correlated with an increase of IAx (r = - 0.268; P=0.003). CPP decreased with an increase of the aortic diameter for each level of the aneurysm (AA: r = - 0.460, P=0.016; TAA: r = - 0.833, P=0.003; AAA: r = - 0.275, P=0.05). PWV decreased with the expansion of the maximum aortic diameter at the level of the AA, TAA and AAA: (r = - 0.389, P=0.03; r = - 0.827, P=0.02 and r = - 0.350, P=0.01, respectively). Conclusion In patients with aortic aneurysm measurements of lower central pulse pressure and reduced PWV indicate an association with increased diameter of the aneurysm. An increase in augmentation index, early return of reflected waves, thus smaller PP amplification and higher CPP were identified in patients with ascending and abdominal aortic aneurysm compared by patients with descending thoracic aortic aneurysm. Funding Acknowledgement Type of funding source: None


2008 ◽  
Vol 104 (2) ◽  
pp. 439-445 ◽  
Author(s):  
David G. Edwards ◽  
Corey R. Mastin ◽  
Robert W. Kenefick

We determined the effects of static and dynamic muscle contraction at equivalent workloads on central aortic pressure and wave reflection. At random, 14 healthy men and women (23 ± 5 yr of age) performed a static handgrip forearm contraction [90 s at 30% of maximal voluntary contraction (MVC)], dynamic handgrip contractions (1 contraction/s for 180 s at 30% MVC), and a control trial. During static and dynamic trials, tension-time index was controlled by holding peak tension constant. Measurements of brachial artery blood pressure and the synthesis of a central aortic pressure waveform (by radial artery applanation tonometry and generalized transfer function) were conducted at baseline, during each trial, and during 1 min of postexercise ischemia (PEI). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. AI increased during both static and dynamic trials (static, 5.2 ± 3.1 to 11.8 ± 3.4%; dynamic, 5.8 ± 3.0 to 13.3 ± 3.4%; P < 0.05) and further increased during PEI (static, 18.5 ± 3.1%; dynamic, 18.6 ± 2.9%; P < 0.05). Peripheral and central systolic and diastolic pressures increased ( P < 0.05) during both static and dynamic trials and remained elevated during PEI. AI and pressure responses did not differ between static and dynamic trials. Peripheral and central pressures increased similarly during static and dynamic contraction; however, the rise in central systolic pressure during both conditions was augmented by increased wave reflection. The present data suggest that wave reflection is an important determinant of the central blood pressure response during forearm muscle contractions.


2020 ◽  
Vol 23 (1) ◽  
pp. 7-11
Author(s):  
P. Nikolov

The PURPUSE of the present study is changes in function and structure of large arteries in individuals with High Normal Arterial Pressure (HNAP) to be established. MATERIAL and METHODS: Structural and functional changes in the large arteries were investigated in 80 individuals with HNAP and in 45 with optimal arterial pressure (OAP). In terms of arterial stiffness, pulse wave velocity (PWV), augmentation index (AI), central aortic pressure (CAP), pulse pressure (PP) were followed up in HNAP group. Intima media thickness (IMT), flow-induced vasodilatation (FMD), ankle-brachial index (ABI) were also studied. RESULTS: Significantly increased values of pulse wave velocity, augmentation index, central aortic pressure, pulse pressure are reported in the HNAP group. In terms of IMT and ABI, being in the reference interval, there is no significant difference between HNAP and OAP groups. The calculated cardiovascular risk (CVR) in both groups is low. CONCLUSION: Significantly higher values of pulse wave velocity, augmentation index, central aortic pressure and pulse pressure in the HNAP group are reported.


2008 ◽  
Vol 294 (6) ◽  
pp. H2535-H2539 ◽  
Author(s):  
David G. Edwards ◽  
Matthew S. Roy ◽  
Raju Y. Prasad

Cardiovascular events are more common in the winter months, possibly because of hemodynamic alterations in response to cold exposure. The purpose of this study was to determine the effect of acute facial cooling on central aortic pressure, arterial stiffness, and wave reflection. Twelve healthy subjects (age 23 ± 3 yr; 6 men, 6 women) underwent supine measurements of carotid-femoral pulse wave velocity (PWV), brachial artery blood pressure, and central aortic pressure (via the synthesis of a central aortic pressure waveform by radial artery applanation tonometry and generalized transfer function) during a control trial (supine rest) and a facial cooling trial (0°C gel pack). Aortic augmentation index (AI), an index of wave reflection, was calculated from the aortic pressure waveform. Measurements were made at baseline, 2 min, and 7 min during each trial. Facial cooling increased ( P < 0.05) peripheral and central diastolic and systolic pressures. Central systolic pressure increased more than peripheral systolic pressure (22 ± 3 vs. 15 ± 2 mmHg; P < 0.05), resulting in decreased pulse pressure amplification ratio. Facial cooling resulted in a robust increase in AI and a modest increase in PWV (AI: −1.4 ± 3.8 vs. 21.2 ± 3.0 and 19.9 ± 3.6%; PWV: 5.6 ± 0.2 vs. 6.5 ± 0.3 and 6.2 ± 0.2 m/s; P < 0.05). Change in mean arterial pressure but not PWV predicted the change in AI, suggesting that facial cooling may increase AI independent of aortic PWV. Facial cooling and the resulting peripheral vasoconstriction are associated with an increase in wave reflection and augmentation of central systolic pressure, potentially explaining ischemia and cardiovascular events in the cold.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paulo Farinatti ◽  
Alex da Silva Itaborahy ◽  
Tainah de Paula ◽  
Walace David Monteiro ◽  
Mário F. Neves

AbstractThe acute effects of exercise modes on pulse wave reflection (PWR) and their relationship with autonomic control remain undefined, particularly in individuals with elevated blood pressure (BP). We compared PWR and autonomic modulation after acute aerobic (AE), resistance (RE), and concurrent exercise (CE) in 15 men with stage-1 hypertension (mean ± SE: 34.7 ± 2.5 years, 28.4 ± 0.6 kg/m2, 133 ± 1/82 ± 2 mmHg). Participants underwent AE, RE, and CE on different days in counterbalanced order. Applanation tonometry and heart rate variability assessments were performed before and 30-min postexercise. Aortic pressure decreased after AE (− 2.4 ± 0.7 mmHg; P = 0.01), RE (− 2.2 ± 0.6 mmHg; P = 0.03), and CE (− 3.1 ± 0.5 mmHg; P = 0.003). Augmentation index remained stable after RE, but lowered after AE (− 5.1 ± 1.7%; P = 0.03) and CE (− 7.6 ± 2.4% P = 0.002). Systolic BP reduction occurred after CE (− 5.3 ± 1.9 mmHg). RR-intervals and parasympathetic modulation lowered after all conditions (~ 30–40%; P < 0.05), while the sympathovagal balance increased after RE (1.2 ± 0.3–1.3 ± 0.3 n.u., P < 0.05). Changes in PWR correlated inversely with sympathetic and directly with vagal modulation in CE. In conclusion, AE, RE, and CE lowered central aortic pressure, but only AE and CE reduced PWR. Overall, those reductions related to decreased parasympathetic and increased sympathetic outflows. Autonomic fluctuations seemed to represent more a consequence than a cause of reduced PWR.


PLoS ONE ◽  
2018 ◽  
Vol 13 (9) ◽  
pp. e0203305 ◽  
Author(s):  
Mark A. Supiano ◽  
Laura Lovato ◽  
Walter T. Ambrosius ◽  
Jeffrey Bates ◽  
Srinivasan Beddhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document