scholarly journals Designing Human In Vitro Models for Drug Development

2020 ◽  
Vol 75 (6) ◽  
pp. 587-589
Author(s):  
Richard C. Becker ◽  
Sakthivel Sadayappan
Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 161
Author(s):  
Alexandra Gatzios ◽  
Matthias Rombaut ◽  
Karolien Buyl ◽  
Joery De Kock ◽  
Robim M. Rodrigues ◽  
...  

Although most same-stage non-alcoholic fatty liver disease (NAFLD) patients exhibit similar histologic sequelae, the underlying mechanisms appear to be highly heterogeneous. Therefore, it was recently proposed to redefine NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in which other known causes of liver disease such as alcohol consumption or viral hepatitis do not need to be excluded. Revised nomenclature envisions speeding up and facilitating anti-MAFLD drug development by means of patient stratification whereby each subgroup would benefit from distinct pharmacological interventions. As human-based in vitro research fulfils an irrefutable step in drug development, action should be taken as well in this stadium of the translational path. Indeed, most established in vitro NAFLD models rely on short-term exposure to fatty acids and use lipid accumulation as a phenotypic benchmark. This general approach to a seemingly ambiguous disease such as NAFLD therefore no longer seems applicable. Human-based in vitro models that accurately reflect distinct disease subgroups of MAFLD should thus be adopted in early preclinical disease modeling and drug testing. In this review article, we outline considerations for setting up translational in vitro experiments in the MAFLD era and allude to potential strategies to implement MAFLD heterogeneity into an in vitro setting so as to better align early drug development with future clinical trial designs.


2021 ◽  
Vol 22 (19) ◽  
pp. 10254
Author(s):  
Johanna Heider ◽  
Sabrina Vogel ◽  
Hansjürgen Volkmer ◽  
Ricarda Breitmeyer

Neuropsychiatric disorders such as schizophrenia or autism spectrum disorder represent a leading and growing burden on worldwide mental health. Fundamental lack in understanding the underlying pathobiology compromises efficient drug development despite the immense medical need. So far, antipsychotic drugs reduce symptom severity and enhance quality of life, but there is no cure available. On the molecular level, schizophrenia and autism spectrum disorders correlate with compromised neuronal phenotypes. There is increasing evidence that aberrant neuroinflammatory responses of glial cells account for synaptic pathologies through deregulated communication and reciprocal modulation. Consequently, microglia and astrocytes emerge as central targets for anti-inflammatory treatment to preserve organization and homeostasis of the central nervous system. Studying the impact of neuroinflammation in the context of neuropsychiatric disorders is, however, limited by the lack of relevant human cellular test systems that are able to represent the dynamic cellular processes and molecular changes observed in human tissue. Today, patient-derived induced pluripotent stem cells offer the opportunity to study neuroinflammatory mechanisms in vitro that comprise the genetic background of affected patients. In this review, we summarize the major findings of iPSC-based microglia and astrocyte research in the context of neuropsychiatric diseases and highlight the benefit of 2D and 3D co-culture models for the generation of efficient in vitro models for target screening and drug development.


2020 ◽  
pp. 341-370
Author(s):  
Jason Ekert ◽  
Sunish Mohanan ◽  
Julianna Deakyne ◽  
Philippa Pribul Allen ◽  
Nikki Marshall ◽  
...  

1993 ◽  
Vol 21 (2) ◽  
pp. 231-240 ◽  
Author(s):  
Ahmed Deldar ◽  
Charles E. Stevens

Theranostics ◽  
2018 ◽  
Vol 8 (19) ◽  
pp. 5259-5275 ◽  
Author(s):  
Yeonho Jo ◽  
Nakwon Choi ◽  
Kyobum Kim ◽  
Hyung-Jun Koo ◽  
Jonghoon Choi ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 704
Author(s):  
Zhengying Zhou ◽  
Jinwei Zhu ◽  
Muhan Jiang ◽  
Lan Sang ◽  
Kun Hao ◽  
...  

Human-derived in vitro models can provide high-throughput efficacy and toxicity data without a species gap in drug development. Challenges are still encountered regarding the full utilisation of massive data in clinical settings. The lack of translated methods hinders the reliable prediction of clinical outcomes. Therefore, in this study, in silico models were proposed to tackle these obstacles from in vitro to in vivo translation, and the current major cell culture methods were introduced, such as human-induced pluripotent stem cells (hiPSCs), 3D cells, organoids, and microphysiological systems (MPS). Furthermore, the role and applications of several in silico models were summarised, including the physiologically based pharmacokinetic model (PBPK), pharmacokinetic/pharmacodynamic model (PK/PD), quantitative systems pharmacology model (QSP), and virtual clinical trials. These credible translation cases will provide templates for subsequent in vitro to in vivo translation. We believe that synergising high-quality in vitro data with existing models can better guide drug development and clinical use.


2019 ◽  
Vol 24 (1) ◽  
pp. 99-111 ◽  
Author(s):  
Evgeniya A. Sokolova ◽  
Vladimir A. Vodeneev ◽  
Sergey M. Deyev ◽  
Irina V. Balalaeva

Sign in / Sign up

Export Citation Format

Share Document