scholarly journals Applicability of benchtop multi-wavelength polar photometers to off-line measurements of the Multi-Angle Absorption Photometer (MAAP) samples

2021 ◽  
Vol 152 ◽  
pp. 105701
Author(s):  
Sara Valentini ◽  
Vera Bernardoni ◽  
Ezio Bolzacchini ◽  
Davide Ciniglia ◽  
Luca Ferrero ◽  
...  
2017 ◽  
Vol 10 (8) ◽  
pp. 2837-2850 ◽  
Author(s):  
Jorge Saturno ◽  
Christopher Pöhlker ◽  
Dario Massabò ◽  
Joel Brito ◽  
Samara Carbone ◽  
...  

Abstract. Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June–September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm−1, with a maximum of 15.9 Mm−1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.


2009 ◽  
Vol 2 (4) ◽  
pp. 1725-1770 ◽  
Author(s):  
M. Collaud Coen ◽  
E. Weingartner ◽  
A. Apituley ◽  
D. Ceburnis ◽  
H. Flentje ◽  
...  

Abstract. The aerosol light absorption coefficient is an essential parameter involved in atmospheric radiation budget calculations. The Aethalometer (AE) has the great advantage of measuring the aerosol light absorption coefficient at several wavelengths, but the derived absorption coefficients are systematically too high when compared to reference methods. Up to now, four different correction algorithms of the AE absorption coefficients have been proposed by several authors. A new correction scheme based on these previously published methods has been developed, which accounts for the optical properties of the aerosol particles embedded in the filter. All the corrections have been tested on six datasets representing different aerosol types and loadings and include multi-wavelength AE and white-light AE. All the corrections have also been evaluated through comparison with a Multi-Angle Absorption Photometer (MAAP) for four datasets lasting between 6 months and five years. The modification of the wavelength dependence by the different corrections is analyzed in detail. The performances and the limits of all AE corrections are determined and recommendations are given.


2010 ◽  
Vol 3 (2) ◽  
pp. 457-474 ◽  
Author(s):  
M. Collaud Coen ◽  
E. Weingartner ◽  
A. Apituley ◽  
D. Ceburnis ◽  
R. Fierz-Schmidhauser ◽  
...  

Abstract. The aerosol light absorption coefficient is an essential parameter involved in atmospheric radiation budget calculations. The Aethalometer (AE) has the great advantage of measuring the aerosol light absorption coefficient at several wavelengths, but the derived absorption coefficients are systematically too high when compared to reference methods. Up to now, four different correction algorithms of the AE absorption coefficients have been proposed by several authors. A new correction scheme based on these previously published methods has been developed, which accounts for the optical properties of the aerosol particles embedded in the filter. All the corrections have been tested on six datasets representing different aerosol types and loadings and include multi-wavelength AE and white-light AE. All the corrections have also been evaluated through comparison with a Multi-Angle Absorption Photometer (MAAP) for four datasets lasting between 6 months and five years. The modification of the wavelength dependence by the different corrections is analyzed in detail. The performances and the limits of all AE corrections are determined and recommendations are given.


2016 ◽  
Author(s):  
Jorge Saturno ◽  
Christopher Pöhlker ◽  
Dario Massabò ◽  
Joel Brito ◽  
Samara Carbone ◽  
...  

Abstract. Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to 7-wavelength Aethalometer data, using Multi-Angle Absorption Photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to 5-wavelength offline absorption measurements obtained with a Multi-Wavelength Absorbance Analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June–September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm−1, with a maximum of 15.9 Mm−1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (AAE) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct AAE, which is commonly implemented in brown carbon contribution calculations. We found that a "hybrid" algorithm was more appropriate to achieve optimal correlations with the MAAP absorption coefficients and with the AAE retrieved from offline MWAA measurements.


2014 ◽  
Vol 4 (2) ◽  
pp. 555-564
Author(s):  
A.M Aslam

On September 24, 2011 a solar flare of M 7.1 class was released from the Sun. The flare was observed by most of the space and ground based observatories in various wavebands. We have carried out a study of this flare to understand its causes on Sun and impact on earth. The flare was released from NOAA active region AR 11302 at 12:33 UT. Although the region had already produced many M class flares and one X- class flare before this flare, the magnetic configuration was not relaxed and still continued to evolve as seen from HMI observations. From the Solar Dynamics Observatory (SDO) multi-wavelength (131 Ã…, 171 Ã…, 304 Ã… and 1600Ã…) observations we identified that a rapidly rising flux rope triggered the flare although HMI observations revealed that magnetic configuration did not undergo a much pronounced change. The flare was associated with a halo Coronal Mass Ejection (CME) as recorded by LASCO/SOHO Observations. The flare associated CME was effective in causing an intense geomagnetic storm with minimum Dst index -103 nT. A radio burst of type II was also recorded by the WAVES/WIND. In the present study attempt is made to study the nature of coupling between solar transients and geospace.


1997 ◽  
Author(s):  
C. Winstead ◽  
W. Wang ◽  
R. Cook ◽  
G. Miller ◽  
C. Winstead ◽  
...  

2018 ◽  
Vol 938 (8) ◽  
pp. 12-19
Author(s):  
S. B. Verdiyev

The possibility to use multi-wavelength regime of total stations operation for making surveys under heavy aerosol atmosphere pollution is researched. The actuality of single- and multi-wavelength regimes rational choice under heavy aerosol atmosphere pollution is grounded. The task on researching the matter of operational regime choice for total stations is formulated. The method for solution of the formulated task is suggested. The theoretical modelling and experimental researches are held to formulate the criterion for choice of single- or multi-wavelength regimes. The practical recommendations for such a choice are formulated. The practical recommendations are formulated for choice of measurements regime. According to formulated recommendations if a single-wavelength total station operates in the field of longer wavelengths (R) of visible band and a three-wavelengths one operates with bias to shorter (B, G, R) wavelengths, the single-wavelength total station should be preferred. But if the single-wavelength total station operates in the field of shorter wavelengths (B) and the three-wavelengths one operates with bias to longer wavelengths (B, G, R) then the multi-wavelengths total station should be preferred. The recommendation described in this article are relevant for both the regimes of measurements with- and without reflector and can be useful for users of total stations.


2019 ◽  
Vol 11 (22) ◽  
pp. 2614 ◽  
Author(s):  
Nina Amiri ◽  
Peter Krzystek ◽  
Marco Heurich ◽  
Andrew Skidmore

Knowledge about forest structures, particularly of deadwood, is fundamental for understanding, protecting, and conserving forest biodiversity. While individual tree-based approaches using single wavelength airborne laserscanning (ALS) can successfully distinguish broadleaf and coniferous trees, they still perform multiple tree species classifications with limited accuracy. Moreover, the mapping of standing dead trees is becoming increasingly important for damage calculation after pest infestation or biodiversity assessment. Recent advances in sensor technology have led to the development of new ALS systems that provide up to three different wavelengths. In this study, we present a novel method which classifies three tree species (Norway spruce, European beech, Silver fir), and dead spruce trees with crowns using full waveform ALS data acquired from three different sensors (wavelengths 532 nm, 1064 nm, 1550 nm). The ALS data were acquired in the Bavarian Forest National Park (Germany) under leaf-on conditions with a maximum point density of 200 points/m 2 . To avoid overfitting of the classifier and to find the most prominent features, we embed a forward feature selection method. We tested our classification procedure using 20 sample plots with 586 measured reference trees. Using single wavelength datasets, the highest accuracy achieved was 74% (wavelength = 1064 nm), followed by 69% (wavelength = 1550 nm) and 65% (wavelength = 532 nm). An improvement of 8–17% over single wavelength datasets was achieved when the multi wavelength data were used. Overall, the contribution of the waveform-based features to the classification accuracy was higher than that of the geometric features by approximately 10%. Our results show that the features derived from a multi wavelength ALS point cloud significantly improve the detailed mapping of tree species and standing dead trees.


Sign in / Sign up

Export Citation Format

Share Document