Comparison of input parameters regarding rock mass in analytical solution and numerical modelling

2016 ◽  
Vol 124 ◽  
pp. 497-504 ◽  
Author(s):  
N.E. Yasitli
Author(s):  
Xiangjian Dong ◽  
Ali Karrech ◽  
Hakan Basarir ◽  
Mohamed Elchalakani ◽  
Chongchong Qi

2019 ◽  
Vol 16 (6) ◽  
Author(s):  
Xiao-Fei Wang ◽  
Bin-Song Jiang ◽  
Qiang Zhang ◽  
Meng-Meng Lu ◽  
Miao Chen

2008 ◽  
Vol 45 (4) ◽  
pp. 484-510 ◽  
Author(s):  
Erik Eberhardt

The underlying complexity associated with deep-seated rock slope stability problems usually restricts their treatment to phenomenological studies that are largely descriptive and qualitative. Quantitative assessments, when employed, typically focus on assessing the stability state but ignore factors related to the slope’s temporal evolution including rock mass strength degradation, internal shearing, and progressive failure, all of which are key processes contributing to the final collapse of the slope. Reliance on displacement monitoring for early warning and the difficulty in interpreting the data without a clear understanding of the underlying mechanisms has led to a situation where predictions are highly variable and generally unreliable. This paper reviews current knowledge regarding prefailure mechanisms of massive rock slopes and current practices used to assess the hazard posed. Advanced numerical modelling results are presented that focus on the importance of stress- and strain-controlled rock mass strength degradation leading to failure initiation. Efforts to address issues related to parameter and model uncertainty are discussed in the context of a high alpine research facility, the “Randa In Situ Rockslide Laboratory”, where state-of-the-art instrumentation systems and numerical modelling are being used to better understand the mechanisms controlling prefailure deformations over time and their evolution leading to catastrophic failure.


2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Tien Dung Le ◽  
Chi Thanh NGUYEN ◽  
Van Chi DAO

Reliable estimation of coal and rock mechanical properties at field scale is a prerequisite for numerical modelling of rock behaviours associated with longwall extraction. This paper describes a systematic approach from data collection, laboratory testing to rock mass properties derivation for simulation of longwall extraction, taking two longwall panels at Quang Ninh coalfield in Vietnam for example. The mechanical properties are verified through comparison with published data of the field, indicating close agreements. A simple numerical model is further developed to demonstrate the proper use of the obtained data. The simulation suggests that the ratio of model length to excavation length should be in the range of 2.5–5; uniaxial compressive strength, deformation modulus and tensile strength can be reduced by a factor of 5.0, 2.13 and 2.0, respectively; and a calibration and validation process must be performed to match in-situ longwall’s behaviours. The approach can be applied for derivation of reliable rock mass properties for numerical simulation of underground excavations.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1108-1122 ◽  
Author(s):  
Hasan Al-Ibadi ◽  
Karl Stephen ◽  
Eric Mackay

Summary Low-salinity waterflooding (LSWF) is a promising process that could lead to increased oil recovery. To date, the greatest attention has been paid to the complex oil/water/rock chemical reactions that might explain the mechanisms of LSWF, and it is generally accepted that these result in behavior equivalent to changing oil and water mobility. This behavior is modeled using an effective salinity range and weighting function to gradually switch from high- to low-salinity relative permeability curves. There has been limited attention on physical transport of fluids during LSWF, particularly at large scale. We focus on how the salinity profile interacts with water fronts through the effective salinity range and dispersion to alter the transport behavior and change the flow velocities, particularly for the salinity profile. We examined a numerical simulation of LSWF at the reservoir scale. Various representations of the effective salinity range and weighting function were also examined. The dispersion of salinity was compared with a theoretical form of numerical dispersion based on input parameters. We also compared salinity movement with the analytical solution of the conventional dispersion/advection equation. From simulations we observed that salinity is dispersed as analytically predicted, although the advection velocity might be changed. In advection-dominated flow, the salinity profile moves at the speed of the injected water. However, as dispersion increases, the mixing zone falls under the influence of the faster-moving formation water and, thus, speeds up. To predict the salinity profile theoretically, we have modified the advection term of the analytical solution as a function of the formation- and injected-water velocities, Péclet number, and effective salinity range. This important result enables prediction of the salinity transport by this newly derived modification of the analytical solution for 1D flow. We can understand the correction to the flow behavior and quantify it from the model input parameters. At the reservoir scale, we typically simulate flow on coarse grids, which introduces numerical dispersion or must include physical dispersion from underlying heterogeneity. Corrections to the equations can contribute to improving the precision of the coarse-scale models, and, more generally, the suggested form of the correction can also be used to calculate the movement of any solute that transports across an interface between two mobile fluids. We can also better understand the relative behaviors of passive tracers and those that are adsorbed.


Sign in / Sign up

Export Citation Format

Share Document