scholarly journals Crustal thickness estimates beneath four seismic stations in Ethiopia inferred from p-wave receiver function studies

2019 ◽  
Vol 150 ◽  
pp. 264-271
Author(s):  
Birhanu A. Kibret ◽  
Atalay Ayele ◽  
Derek Keir
2021 ◽  
Author(s):  
Harry Telajan Linang ◽  
Amy Gilligan ◽  
Jennifer Jenkins ◽  
Tim Greenfield ◽  
Felix Tongkul ◽  
...  

<div> <div> <div> <p>Borneo is located at the centre of Southeast Asia, which is one of the most active tectonic regions on Earth due to the subduction of the Indo-Australian plate in the south and the Philippines Sea plate in the east. Borneo resides on the leading edge of the Sundaland block of the Eurasian plate and exhibits lower rates of seismicity when compared to the surrounding regions due to its intraplate setting. Sulawesi, an island which lies just southeast of Borneo, is characterised by intense seismicity due to multiple subduction zones in its vicinity. The tectonic relationship between the two islands is poorly understood, including the provenance of their respective lithospheres, which may have Eurasian and/or East Gondwana origin.</p> <p>Here, we present recent receiver function (RF) results from temporary and permanent broadband seismic stations in the region, which can be used to help improve our understanding of the crust and mantle lithosphere beneath Borneo and Sulawesi. We applied H-K stacking, receiver function migration and inversion to obtain reliable estimates of the crustal thickness beneath the seismic stations. Our preliminary results indicate that the crust beneath Sabah (in northern Borneo), which is a post-subduction setting, appears to be much more complex and is overall thicker (more than 35 km) than the rest of the island. In addition, we find that crustal thickness varies between different tectonic blocks defined from previous surface mapping, with the thinnest crust (23 to 25 km) occurring beneath Sarawak in the west-northwest as well as in the east of Kalimantan.</p> <p>We also present preliminary results from Virtual Deep Seismic Sounding (VDSS) in northern Borneo, where from the RF results we know that there is thick and complex crust. VDSS is able to produce well constrained crustal thickness results in regions where the RF analysis has difficulty recovering the Moho, likely due to complexities such as thick sedimentary basins and obducted ophiolite sequences.</p> </div> </div> </div>


2020 ◽  
Vol 224 (2) ◽  
pp. 858-870
Author(s):  
Devajit Hazarika ◽  
Somak Hajra ◽  
Abhishek Kundu ◽  
Meena Bankhwal ◽  
Naresh Kumar ◽  
...  

SUMMARY We analyse P-wave receiver functions across the Kumaon Himalaya and adjoining area to constrain crustal thickness, intracrustal structures and seismic velocity characteristics to address the role of the underlying structure on seismogenesis and geodynamic evolution of the region. The three-component waveforms of teleseismic earthquakes recorded by a seismological network consisting of 18 broad-band seismological stations have been used for receiver function analysis. The common conversion point (CCP) depth migrated receiver function image and shear wave velocity models obtained through inversion show a variation of crustal thickness from ∼38 km in the Indo-Gangetic Plain to ∼42 km near the Vaikrita Thrust. A ramp (∼20°) structure on the Main Himalayan Thrust (MHT) is revealed beneath the Chiplakot Crystalline Belt (CCB) that facilitates the exhumation of the CCB. The geometry of the MHT observed from the receiver function image is consistent with the geometry revealed by a geological balanced cross-section. A cluster of seismicity at shallow to mid-crustal depths is detected near the MHT ramp. The spatial and depth distribution of seismicity pattern beneath the CCB and presence of steep dipping imbricate faults inferred from focal mechanism solutions suggest a Lesser Himalayan Duplex structure in the CCB above the MHT ramp. The study reveals a low-velocity zone (LVZ) with a high Poisson's ratio (σ ∼0.28–0.30) at lower crustal depth beneath the CCB. The high value of Poisson's ratio in the lower crust suggests the presence of fluid/partial melt. The shear heating in the ductile regime and/or decompression and cooling associated with the exhumation of the CCB plausibly created favorable conditions for partial melting in the lower crustal LVZ.


2020 ◽  
Author(s):  
Poulami Roy ◽  
Kajaljyoti Borah

<p>Cratons are representative of the oldest cores of continental crusts. Study of cratons is important  as they preserve the pristine nature of continental crusts as well as they have economic significance as a major source of the world's mineral deposits. The crustal thickness, crustal composition, structure and physical properties of crust-mantle transition (the Moho) are the key parameters for understanding the formation and evolution of continental crust. The ratio of  seismic P-wave and S-wave velocity (Vp/Vs) is used as a parameter to understand the petrologic nature of the Earth's crust. Using these parameters, we address the crustal properties of all Archean cratons. The teleseismic P-wave receiver function analysis reveals that all the Eoarchean (4-3.6 Ga) cratons (Superior, North Atlantic Craton, North China Craton, Yilgarn, Zimbabwe, Kaapvaal) have crustal thickness ranges between 34-42 km and Vp/Vs ratio 1.68-1.79, the Paleoarchean (3.6-3.2 Ga) cratons (Baltic shield, Pilbara, Tanzania, Grunehogna) have 29-52 km crustal thickness and Vp/Vs ratio 1.7-1.85, the Mesoarchean (3.2-2.8 Ga) cratons (Sao Francisco, Guapore, Yangtze, Antananarivo) have 36-53 km thickness and Vp/Vs ratio 1.7-1.9, and Neoarchean (2.8-2.5 Ga) cratons (Guiana, Anabar, Gawler, Napier, Tarim) have 36-59 km thickness and Vp/Vs ratio 1.64-1.95. The nature of crust-mantle transition is overall sharp and flat.  We also found that the crusts which are stabilized earlier, are thinner compared to the later stabilized crusts. Our findings are well-correlated with the craton evolution process predicted by Durrheim and Mooney (1994), where older crusts are thin due to delamination process and relatively younger crusts are thick due to basaltic underplating. Our result of higher Vp/Vs ratio in the relatively younger crusts corroborates with the mafic nature of the crust whereas the older crusts are felsic-intermediate resulting lower Vp/Vs ratio. Our study is unique as it includes most of the global cratons and suggests a global model of continental crust formation and evolution process.</p>


2021 ◽  
Author(s):  
◽  
Michelle Linda Salmon

<p>Three geophysical techniques have been used to investigate the location and the nature of a large-scale change in crust and uppermost mantle properties below the western North Island of New Zealand. Receiver function analysis reveals a step like change in crustal thickness from ~ 25 km below the northwestern North Island to ≥ 32 km in the southwestern North Island. P-wave attenuation is elevated north of this change in crustal thickness (1000/Qp ≈ 1.9 for α = 0) and is compatible with a wet mantle at near solidus temperatures (T ≈0.97 melting temperature). Attenuation decreases by at least a factor of 2 for the southwestern North Island to values closer to those expected for normal continental lithosphere (1000/Qp ≤ 1 for α = 0). A region of extremely high attenuation (1000/Qp ≈ 5 for α = 0) is observed below the Central Volcanic Region. This value of attenuation is compatible with a wet mantle at temperatures just above melting (T ≈ 1.02 melting temperature). Finally 2D modelling of magnetotelluric data reveals a region of low electrical resistivity (100 Ωm) in the mantle below the region of thinned crust. Like the P-wave attenuation, this region of low resistivity can be explained by a water-saturated mantle at near solidus temperatures (T=0.88-0.97 melting temperature). The changes in crustal thickness, attenuation and electrical resistivity are all coincident with the southern limit of volcanism (~ 39.3°S) at a boundary that runs approximately east-west, perpendicular to the present plate boundary. The only surface expressions of this boundary are the termination of volcanism and the dome-like uplift of the North Island, which has previously been explained by the presence of a buoyant low-density mantle beneath the northwestern North Island. Elevated temperatures and water content inferred from this study are in agreement with this explanation. The sudden transition displayed in all three data sets, but particularly the crustal thickness step seen in the receiver function, calls for a special explanation. Thermal processes are too diffuse to explain the step and instead a mechanical process is called for. One possibility is that the step was created by convective removal of thickened lithosphere.</p>


2020 ◽  
Vol 91 (3) ◽  
pp. 1660-1671 ◽  
Author(s):  
Jochen Braunmiller ◽  
John Nabelek ◽  
Abdolreza Ghods

Abstract Knowing the orientation of horizontal components of seismic sensors is important for many seismological applications such as waveform modeling, receiver function analysis, and shear-wave splitting. We determined the sensor orientations for broadband seismic stations belonging to the Iranian National Seismic Network (INSN) and the Iranian Seismological Center (IRSC) to enable such studies. For both networks, we have catalogs of event-based seismic waveforms of Iranian earthquakes. Sensor orientations were found by P-wave energy minimization on the transverse component and validated by long-period waveform modeling of events with well-constrained source parameters. We obtained stable sensor orientations for 28 (of 29) INSN sites and for 66 (of 92) IRSC sites. About 75% and 59% of all INSN and IRSC orientation estimates, respectively, are oriented within 15° of true north leaving many sites with largely misoriented sensors. We found temporally changing sensor orientations for 36 (of 121) sites.


2021 ◽  
Author(s):  
◽  
Michelle Linda Salmon

<p>Three geophysical techniques have been used to investigate the location and the nature of a large-scale change in crust and uppermost mantle properties below the western North Island of New Zealand. Receiver function analysis reveals a step like change in crustal thickness from ~ 25 km below the northwestern North Island to ≥ 32 km in the southwestern North Island. P-wave attenuation is elevated north of this change in crustal thickness (1000/Qp ≈ 1.9 for α = 0) and is compatible with a wet mantle at near solidus temperatures (T ≈0.97 melting temperature). Attenuation decreases by at least a factor of 2 for the southwestern North Island to values closer to those expected for normal continental lithosphere (1000/Qp ≤ 1 for α = 0). A region of extremely high attenuation (1000/Qp ≈ 5 for α = 0) is observed below the Central Volcanic Region. This value of attenuation is compatible with a wet mantle at temperatures just above melting (T ≈ 1.02 melting temperature). Finally 2D modelling of magnetotelluric data reveals a region of low electrical resistivity (100 Ωm) in the mantle below the region of thinned crust. Like the P-wave attenuation, this region of low resistivity can be explained by a water-saturated mantle at near solidus temperatures (T=0.88-0.97 melting temperature). The changes in crustal thickness, attenuation and electrical resistivity are all coincident with the southern limit of volcanism (~ 39.3°S) at a boundary that runs approximately east-west, perpendicular to the present plate boundary. The only surface expressions of this boundary are the termination of volcanism and the dome-like uplift of the North Island, which has previously been explained by the presence of a buoyant low-density mantle beneath the northwestern North Island. Elevated temperatures and water content inferred from this study are in agreement with this explanation. The sudden transition displayed in all three data sets, but particularly the crustal thickness step seen in the receiver function, calls for a special explanation. Thermal processes are too diffuse to explain the step and instead a mechanical process is called for. One possibility is that the step was created by convective removal of thickened lithosphere.</p>


2019 ◽  
Vol 24 (1) ◽  
pp. 101-120
Author(s):  
Kajetan Chrapkiewicz ◽  
Monika Wilde-Piórko ◽  
Marcin Polkowski ◽  
Marek Grad

AbstractNon-linear inverse problems arising in seismology are usually addressed either by linearization or by Monte Carlo methods. Neither approach is flawless. The former needs an accurate starting model; the latter is computationally intensive. Both require careful tuning of inversion parameters. An additional challenge is posed by joint inversion of data of different sensitivities and noise levels such as receiver functions and surface wave dispersion curves. We propose a generic workflow that combines advantages of both methods by endowing the linearized approach with an ensemble of homogeneous starting models. It successfully addresses several fundamental issues inherent in a wide range of inverse problems, such as trapping by local minima, exploitation of a priori knowledge, choice of a model depth, proper weighting of data sets characterized by different uncertainties, and credibility of final models. Some of them are tackled with the aid of novel 1D checkerboard tests—an intuitive and feasible addition to the resolution matrix. We applied our workflow to study the south-western margin of the East European Craton. Rayleigh wave phase velocity dispersion and P-wave receiver function data were gathered in the passive seismic experiment “13 BB Star” (2013–2016) in the area of the crust recognized by previous borehole and refraction surveys. Final models of S-wave velocity down to 300 km depth beneath the array are characterized by proximity in the parameter space and very good data fit. The maximum value in the mantle is higher by 0.1–0.2 km/s than reported for other cratons.


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
G. Patanè ◽  
C. Centamore ◽  
S. La Delfa

This paper analyses twelve etnean earthquakes which occurred at various depths and recorded at least by eleven stations. The seismic stations span a wide part of the volcanic edifice; therefore each set of direct P-wave arrival times at these stations can be considered appropriate for tracing isochronal curves. Using this simple methodology and the results obtained by previous studies the authors make a reconstruction of the geometry of the bodies inside the crust beneath Mt. Etna. These bodies are interpreted as a set of cooled magmatic masses, delimited by low-velocity discontinuities which can be considered, at present, the major feeding systems of the volcano.


2021 ◽  
Vol 873 (1) ◽  
pp. 012056
Author(s):  
M F R Auly ◽  
A K Ilahi ◽  
I Madrinovella ◽  
S Widyanti ◽  
S K Suhardja ◽  
...  

Abstract The tectonic setting of Java island, located at southwestern edge of the Eurasia continent, is dominated by the subduction of Indo-Australia plate. One of the characteristics of active subduction is active seismicity, the generation of arc magmatism and volcanic activity. Mt. Merapi is one example of active volcano related with the subduction process. It is one of the most active volcanoes with location close to high population area. To better understand this area, we employed the Receiver Function technique, a method to image sub surface structure by removing the vertical component from horizontal component. First, we collected high magnitude events and processed RF with water level deconvolution method. Then, we constructed synthetic model with initial velocity input from previous tomography model. Note that we used reflectivity method in generating synthetic model with input parameters matched with parameters from real data processing. Next, we adjusted velocity inputs mainly on tops sediments (1-3 km) to include sediment layers and volcanic rocks, mid-depth low velocity zone that may be related with magma chamber and depth of crust-mantle boundary. Current forward velocity models show a relatively good agreement from 3 stations (ME25, ME32 and ME36). We estimate a thin layer of sediments followed a zone of velocity layer at a depth of 10-15 km and crust-mantle boundary ranging from 26-29 km. In this study, simulated that the signal of sediments layer and low velocity layers interfere main crust mantle boundary that supposed to be highest signal after the P wave in the typical receiver function study.


Sign in / Sign up

Export Citation Format

Share Document