Provenance, palaeoweathering and tectonic setting of the Ediacaran Bayandor Formation in NW Iran: Implications for the northern Gondwana continental margin during the late Neoproterozoic

2020 ◽  
Vol 161 ◽  
pp. 103670 ◽  
Author(s):  
Sara Pourdivanbeigi Moghaddam ◽  
Mohammad Ali Salehi ◽  
Mahdi Jafarzadeh ◽  
Afshin Zohdi
Author(s):  
A.V. Grebennikov ◽  
◽  
A.I. Khanchuk ◽  

Transform margins represent lithospheric plate boundaries with horizontal sliding of oceanic plate, which in time and space replaced the subduction related convergent margins. This happened due to: spreading ridge–trench intersection (California; Queen Charlotte–Northern Cordilleran, West of the Antarctic Peninsula, and probably the Late Miocene–Pleistocene Southernmost South America) or ridge death along continental margin (Baja California); change in the direction of oceanic plate movement (Western Aleutian–Komandorsk; Southernmost tip of the Andes); and island arc-continent collision (New Guinea Island). Post-subduction magmatism is related to a slab window that resulted either from the spreading ridge collision (subduction) with a continental margin or slab tear formation, or slab break-off after subduction cessation due to other reasons. Igneous magmatic series formed in consequence of these events show diversity of tholeiitic (sub-alkaline), alkaline or calc-alkaline, high-alumina and adakitic rocks. The comprehensive geochemical dataset (more than 2400 analyses) on igneous rocks of the model transform and convergent geodynamic settings allowed to substantiate the most informative triple diagrams for the petrogenic oxides TiO2 × 10 – Fe2O3Tot – MgO and trace elements Nb – La– Yb. Mostly approved for the rock compositions with SiO2 < 63 wt. %, the new plots are capable of distinguishing igneous rocks formed above zones of subduction at an island arc and continental margin (related to convergent margins), from those formed in the tectonic setting of transform margins along continents or island arcs.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 511
Author(s):  
Liang Yue ◽  
Veerle Vandeginste

The Neoproterozoic era is a time of major environmental change in Earth history. The Ediacaran period (635–541 Ma), the uppermost division of Precambrian time, is characterized by the remarkable Shuram excursion (largest C isotope negative excursion), a deep ocean water oxidation event, and Ediacaran biota. The Nafun Group of Oman provides a well-preserved and mostly continuous section of an Ediacaran succession. Based on geochemical data from the Nafun Group, the Shuram excursion (SE) and deep ocean oxidation hypotheses were proposed. Now, we sampled this section at high stratigraphic resolution, and present here the petrographical and geochemical analysis of the Khufai, Shuram and Buah Formations. The major and trace element analysis of shales from the Shuram Formation indicates that northern Oman was an active continental margin environment in Neoproterozoic times. The provenance of the Shuram Formation was primarily mafic and intermediate igneous rocks. With the unsteady tectonic setting, the development of the Nafun Group was influenced by hydrothermal supply and volcaniclastic input. Based on the V/Cr and U/Th ratio of the samples from the Nafun Group, our study reveals the transition of the ocean water redox environment, which is connected to the rise and fall of the Ediacaran biota. Our study constrains the tectonic setting of northern Oman and the petrography and geochemical data from the Nafun Group for the hydrothermal and volcaniclastic supply. Thus, our study acknowledges more factors for the explanation of the Ediacaran conundrums.


Author(s):  
Liu Boran ◽  
Zhao Xilin ◽  
Yu Shengyao ◽  
Jiang Yang ◽  
Mao Jianren ◽  
...  

Though it is widely accepted that the Paleo-Pacific Plate has a subducted beneath the eastern Asian continent, controversy still exists regarding the initial timing and geodynamic model of the subduction. In this contribution, we report new geochronology and geochemical data of granitic plutons within the Gan-Hang Belt in Southeast China. The Damaoshan pluton yields zircon U-Pb ages of 139.60 ± 0.69 Ma and 133.90 ± 1.70 Ma, and the Qianshan and Fenglonggu plutons are dated at 135.70 ± 1.30 Ma and 135.33 ± 0.93 Ma, respectively. The Hecun and Huangtuling plutons yield ages of 157.85 ± 0.77 Ma and 167.10 ± 7.50 Ma, respectively. The Damaoshan pluton has an obvious A-type geochemical signature in terms of major and trace element compositions, such as high K2O+Na2O contents (average 8.46 wt%) and FeOT/MgO ratios (average 10.29). The low CaO/Na2O ratios but high Al2O3/TiO2 (average is 110.05), Rb/Ba (average is 9.14), and Rb/Sr (average is 22.53) ratios indicate a derivation from pelite-derived melt. Meanwhile, we also studied the Mesozoic adakites related to magmatic ore formed during a compressive tectonic setting as well as the later bimodal dikes and A-type granitic plutons formed during the extensional tectonic setting in the Gan-Hang Belt. The multiphase qualitative plutons with geochemical characteristics of the adakitic and island arc types (175−150 Ma) related to the northwestward subduction of the Paleo-Pacific Plate, several bimodal dikes, and A-type granitic plutons (135−123 Ma) related to the subducted slab roll-back are found within the Gan-Hang Belt. All of these plutons show a decreasing trend of isotopic ages from the inland area to the coast, from SW to NE. We propose that the distribution pattern of these plutons in Southeast China was controlled by a scissors-like subduction and slab roll-back of the Paleo-Pacific Plate, which occurred roughly from SW to NE along the continental margin approximately during the Middle Jurassic to the Early Cretaceous.


2020 ◽  
Vol 50 ◽  
pp. 23-44
Author(s):  
Boldbaatar Dolzodmaa ◽  
Yasuhito Osanai ◽  
Nobuhiko Nakano ◽  
Tatsuro Adachi

The Central Asian Orogenic Belt had been formed by amalgamation of voluminous subduction–accretionary complexes during the Late Neoproterozoic to the Mesozoic period. Mongolia is situated in the center of this belt. This study presents new zircon U–Pb geochronological, whole-rock major and trace element data for granitoids within central Mongolia and discusses the tectonic setting and evolution of these granitic magmas during their formation and emplacement. The zircon U–Pb ages indicate that the magmatism can be divided into three stages: the 564–532 Ma Baidrag granitoids, the 269–248 and 238–237 Ma Khangai granitoids. The 564–532 Ma Baidrag granitoids are adakitic, have an I-type affinity, and were emplaced into metamorphic rocks. In comparison, the 269–248 Ma granitoids have high-K, calc-alkaline, granodioritic compositions and are I-type granites, whereas the associated the 238–237 Ma granites have an A-type affinity. The 564–532 Ma Baidrag and 269–248 Ma Khangai granitoids also both have volcanic arc-type affinities, whereas the 238–237 Ma granites formed in a post-collisional tectonic setting. These geochronological and geochemical results suggest that arc magmatism occurred at the 564–532 Ma which might be the oldest magmatic activity in central Mongolia. Between the Baidrag and the Khangai, there might be paleo-ocean and the oceanic plate subducted beneath the Khangai and produced voluminous granite bodies during the 269–248 Ma. After the closure of the paleo-ocean, the post collisional granitoids were formed at the 238–237 Ma based on the result of later granitoids in the Khangai area.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1023
Author(s):  
Hyojong Lee ◽  
Min Gyu Kwon ◽  
Seungwon Shin ◽  
Hyeongseong Cho ◽  
Jong-Sun Kim ◽  
...  

Zircon U-Pb geochronology and bulk-rock geochemistry analyses were carried out to investigate their relationship with depositional environments of the non-marine Neungju Basin sediments in South Korea. The Neungju Basin was formed in an active continental margin setting during the Late Cretaceous with associated volcanism. Detrital zircon age distributions of the Neungju Basin reveal that the source rocks surrounding the basin supplied sediments into the basin from all directions, making different zircon age populations according to the depositional environments. Mudstone geochemistry with support of detrital zircon U-Pb age data reveals how the heterogeneity affects the geochemical characteristics of tectonic setting and weathering intensity. The sediments in the proximal (alluvial fan to sandflat) and distal (playa lake) environments differ compositionally because sediment mixing occurred exclusively in the distal environment. The proximal deposits show a passive margin signature, reflecting their derivation from the adjacent metamorphic and granitic basement rocks. The distal deposits properly indicate an active continental margin setting due to the additional supply of reworked volcaniclastic sediments. The proximal deposits indicate a minor degree of chemical weathering corresponding to fossil and sedimentological records of the basin, whereas the distal deposits show lower weathering intensity by reworking of unaltered volcaniclastic detritus from unstable volcanic and volcaniclastic terranes. Overall, this study highlights that compositional data obtained from a specific location and depositional environments may not describe the overall characteristic of the basin.


Sign in / Sign up

Export Citation Format

Share Document