Monitoring of chlorophyll-a and sea surface silicate concentrations in the south part of Cheju island in the East China sea using MODIS data

Author(s):  
Yuanzhi Zhang ◽  
Zhaojun Huang ◽  
Dongyang Fu ◽  
Jin Yeu Tsou ◽  
Tingchen Jiang ◽  
...  
2015 ◽  
Vol 34 (3) ◽  
pp. 51-58 ◽  
Author(s):  
Dongyang Fu ◽  
Zhaojun Huang ◽  
Yuanzhi Zhang ◽  
Delu Pan ◽  
Youzhua Ding ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 279
Author(s):  
Zhehao Yang ◽  
Weizeng Shao ◽  
Yuyi Hu ◽  
Qiyan Ji ◽  
Huan Li ◽  
...  

Marine oil spills occur suddenly and pose a serious threat to ecosystems in coastal waters. Oil spills continuously affect the ocean environment for years. In this study, the oil spill caused by the accident of the Sanchi ship (2018) in the East China Sea was hindcast simulated using the oil particle-tracing method. Sea-surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF), currents simulated from the Finite-Volume Community Ocean Model (FVCOM), and waves simulated from the Simulating WAves Nearshore (SWAN) were employed as background marine dynamics fields. In particular, the oil spill simulation was compared with the detection from Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) images. The validation of the SWAN-simulated significant wave height (SWH) against measurements from the Jason-2 altimeter showed a 0.58 m root mean square error (RMSE) with a 0.93 correlation (COR). Further, the sea-surface current was compared with that from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2), yielding a 0.08 m/s RMSE and a 0.71 COR. Under these circumstances, we think the model-simulated sea-surface currents and waves are reliable for this work. A hindcast simulation of the tracks of oil slicks spilled from the Sanchi shipwreck was conducted during the period of 14–17 January 2018. It was found that the general track of the simulated oil slicks was consistent with the observations from the collected GF-3 SAR images. However, the details from the GF-3 SAR images were more obvious. The spatial coverage of oil slicks between the SAR-detected and simulated results was about 1 km2. In summary, we conclude that combining numerical simulation and SAR remote sensing is a promising technique for real-time oil spill monitoring and the prediction of oil spreading.


2021 ◽  
pp. 1-43
Author(s):  
Yoshi N. Sasaki ◽  
Chisato Umeda

AbstractIt has been reported that the sea surface temperature (SST) trend of the East China Sea during the 20th century was a couple of times larger than the global mean SST trend. However, the detailed spatial structure of the SST trend in the East China Sea and its mechanism have not been understood. The present study examines the SST trend in the East China Sea from 1901 to 2010 using observational data and a Regional Ocean Modeling System (ROMS) with an eddy-resolving horizontal resolution. A comparison among two observational datasets and the model output reveal that enhanced SST warming occurred along the Kuroshio and along the coast of China over the continental shelf. In both regions, the SST trends were the largest in winter. The heat budget analysis using the model output indicates that the upper layer temperature rises in both regions were induced by the trend of ocean advection, which was balanced to the increasing of surface net heat release. In addition, the rapid SST warming along the Kuroshio was induced by the acceleration of the Kuroshio. Sensitivity experiments revealed that this acceleration was likely caused by the negative wind stress curl anomalies over the North Pacific. In contrast, the enhanced SST warming along the China coast resulted from the ocean circulation change over the continental shelf by local atmospheric forcing.


2019 ◽  
Vol 175 ◽  
pp. 68-80 ◽  
Author(s):  
Jae-Hong Moon ◽  
Taekyun Kim ◽  
Young Baek Son ◽  
Ji-Seok Hong ◽  
Joon-Ho Lee ◽  
...  

2002 ◽  
Vol 112 (5) ◽  
pp. 2362-2362
Author(s):  
Peter H. Dahl ◽  
Christian J. Eggen ◽  
Russell D. Light

1996 ◽  
Vol 52 (6) ◽  
pp. 763-769 ◽  
Author(s):  
Tetsuo Yanagi ◽  
Takanori Shimizu ◽  
Takeshi Matsuno

Sign in / Sign up

Export Citation Format

Share Document