scholarly journals Rapid warming of sea surface temperature along the Kuroshio and the China coast in the East China Sea during the 20th century

2021 ◽  
pp. 1-43
Author(s):  
Yoshi N. Sasaki ◽  
Chisato Umeda

AbstractIt has been reported that the sea surface temperature (SST) trend of the East China Sea during the 20th century was a couple of times larger than the global mean SST trend. However, the detailed spatial structure of the SST trend in the East China Sea and its mechanism have not been understood. The present study examines the SST trend in the East China Sea from 1901 to 2010 using observational data and a Regional Ocean Modeling System (ROMS) with an eddy-resolving horizontal resolution. A comparison among two observational datasets and the model output reveal that enhanced SST warming occurred along the Kuroshio and along the coast of China over the continental shelf. In both regions, the SST trends were the largest in winter. The heat budget analysis using the model output indicates that the upper layer temperature rises in both regions were induced by the trend of ocean advection, which was balanced to the increasing of surface net heat release. In addition, the rapid SST warming along the Kuroshio was induced by the acceleration of the Kuroshio. Sensitivity experiments revealed that this acceleration was likely caused by the negative wind stress curl anomalies over the North Pacific. In contrast, the enhanced SST warming along the China coast resulted from the ocean circulation change over the continental shelf by local atmospheric forcing.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9976 ◽  
Author(s):  
Hanxue Qu ◽  
Yong Xu ◽  
Jinbao Wang ◽  
Xin-Zheng Li

We analyzed the radiolarian assemblages of 59 surface sediment samples collected from the Yellow Sea and East China Sea of the northwestern Pacific. In the study region, the Kuroshio Current and its derivative branches exerted a crucial impact on radiolarian composition and distribution. Radiolarians in the Yellow Sea shelf showed a quite low abundance as no tests were found in 15 of 25 Yellow Sea samples. Radiolarians in the East China Sea shelf could be divided into three regional groups: the East China Sea north region group, the East China Sea middle region group, and the East China Sea south region group. The results of the redundancy analysis suggested that the Sea Surface Temperature and Sea Surface Salinity were primary environmental variables explaining species-environment relationship. The gradients of temperature, salinity, and species diversity reflect the powerful influence of the Kuroshio Current in the study area.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen-Tung Arthur Chen ◽  
Ting-Hsuan Huang ◽  
Chi-Hsuan Wu ◽  
Haiyan Yang ◽  
Xinyu Guo

AbstractThe Kuroshio—literally “the Black Stream”—is the most substantial current in the Pacific Ocean. It was called the Black Stream because this oligotrophic current is so nutrient-poor in its euphotic zone that the water appears black without the influence of phytoplankton and the associated, often colored dissolved organic matter. Yet, below the euphotic layer, nutrient concentrations increase with depth while current speed declines. Consequently, a core of maximum nutrient flux, the so-called nutrient stream, develops at a depth of roughly between 200 and 800 m. This poorly studied nutrient stream transports nutrients to and supports high productivity and fisheries on the East China Sea continental shelf; it also transports nutrients to and promotes increased productivity and fisheries in the Kuroshio Extension and the subarctic Pacific Ocean. Three modes of the Kuroshio nutrient stream are detected off SE Taiwan for the first time: one has a single-core; one has two cores that are apparently separated by the ridge at 120.6–122° E, and one has two cores that are separated by a southward flow above the ridge. More importantly, northward nutrient transports seem to have been increasing since 2015 as a result of a 30% increase in subsurface water transport, which began in 2013. Such a nutrient stream supports the Kuroshio's high productivity, such as on the East China Sea continental shelf and in the Kuroshio Extension SE of Japan.


2021 ◽  
Vol 9 (3) ◽  
pp. 279
Author(s):  
Zhehao Yang ◽  
Weizeng Shao ◽  
Yuyi Hu ◽  
Qiyan Ji ◽  
Huan Li ◽  
...  

Marine oil spills occur suddenly and pose a serious threat to ecosystems in coastal waters. Oil spills continuously affect the ocean environment for years. In this study, the oil spill caused by the accident of the Sanchi ship (2018) in the East China Sea was hindcast simulated using the oil particle-tracing method. Sea-surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF), currents simulated from the Finite-Volume Community Ocean Model (FVCOM), and waves simulated from the Simulating WAves Nearshore (SWAN) were employed as background marine dynamics fields. In particular, the oil spill simulation was compared with the detection from Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) images. The validation of the SWAN-simulated significant wave height (SWH) against measurements from the Jason-2 altimeter showed a 0.58 m root mean square error (RMSE) with a 0.93 correlation (COR). Further, the sea-surface current was compared with that from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2), yielding a 0.08 m/s RMSE and a 0.71 COR. Under these circumstances, we think the model-simulated sea-surface currents and waves are reliable for this work. A hindcast simulation of the tracks of oil slicks spilled from the Sanchi shipwreck was conducted during the period of 14–17 January 2018. It was found that the general track of the simulated oil slicks was consistent with the observations from the collected GF-3 SAR images. However, the details from the GF-3 SAR images were more obvious. The spatial coverage of oil slicks between the SAR-detected and simulated results was about 1 km2. In summary, we conclude that combining numerical simulation and SAR remote sensing is a promising technique for real-time oil spill monitoring and the prediction of oil spreading.


Sign in / Sign up

Export Citation Format

Share Document