scholarly journals An Investigation of Traffic Density Changes inside Wuhan during the COVID-19 Epidemic with GF-2 Time-Series Images

Author(s):  
Chen Wu ◽  
Yinong Guo ◽  
Haonan Guo ◽  
Jingwen Yuan ◽  
Lixiang Ru ◽  
...  
2012 ◽  
Vol 34 (7) ◽  
pp. 2432-2453 ◽  
Author(s):  
Xuexia Chen ◽  
James E. Vogelmann ◽  
Gyanesh Chander ◽  
Lei Ji ◽  
Brian Tolk ◽  
...  

2018 ◽  
Vol 1 (1-2) ◽  
pp. 29-38 ◽  
Author(s):  
Imran Hossain Newton ◽  
A. F. M Tariqul Islam ◽  
A. K. M. Saiful Islam ◽  
G. M. Tarekul Islam ◽  
Anika Tahsin ◽  
...  

2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Akim Ramin ◽  
Masnawi Mustaffa ◽  
Shaharudin Ahmad

In the study of ocean engineering, marine traffic is referring to the study of the pattern of the density of ships within the particular boundaries at certain periods. The Port Klang and Straits of Malacca are known for one of the heaviest traffics in Malaysia and the world. The study of traffic within this area is important, because it enables ships to avoid traffic congestion that might happen. Thus, this study is mainly aimed at   predicting or forecasting the density of the ships using the route through this waterway by using quantitative methods which are time-series models and the associative models from the Automatic Identification System (AIS) data. The moving averages, weight moving average, and exponential smoothing for the time series model and associative model have used multiple regression. The results show an exponential smoothing alpha 0.8 and give the lowest MAPE as 20.701%, thereby making this method to be the best in forecasting the future traffic density among the method categories.


2013 ◽  
Vol 8 (2) ◽  
pp. 328-345 ◽  
Author(s):  
Masashi Matsuoka ◽  
◽  
Hiroyuki Miura ◽  
Saburoh Midorikawa ◽  
Miguel Estrada ◽  
...  

Lima City, Peru, is, like Japan, on the verge of a strike by a massive earthquake. Building inventory data for the city need to be created for earthquake damage estimation, so the city was subjected to the extraction of spatial distribution of building age from Landsat satellite time-series images and an assessing building height from ALOS/PRISM images. Interband calculation of Landsat time-series images gives various indices relevant to land covering. The transition of indices was evaluated to clarify urban sprawl taking place in the northern, southern, and eastern parts of Lima City. Built-up area data were created for buildings by age. The height of large-scale mid-to-highrise buildings was extracted by applying spatial filtering for a DSM (Digital Surface Model) generated from stereovision PRISM images. As a result, buildings with a small square measure, color similar to that of their surroundings, or complicated shapes turned out to be difficult to detect.


Author(s):  
Qingke Wen ◽  
Zengxiang Zhang ◽  
Shuo Liu ◽  
Xiao Wang ◽  
Chen Wang

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Kai Cheng ◽  
Juanle Wang

Efficient methodologies for mapping forest types in complicated mountain areas are essential for the implementation of sustainable forest management practices and monitoring. Existing solutions dedicated to forest-type mapping are primarily focused on supervised machine learning algorithms (MLAs) using remote sensing time-series images. However, MLAs are challenged by complex and problematic forest type compositions, lack of training data, loss of temporal data caused by clouds obscuration, and selection of input feature sets for mountainous areas. The time-weighted dynamic time warping (TWDTW) is a supervised classifier, an adaptation of the dynamic time warping method for time series analysis for land cover classification. This study evaluates the performance of the TWDTW method that uses a combination of Sentinel-2 and Landsat-8 time-series images when applied to complicated mountain forest-type classifications in southern China with complex topographic conditions and forest-type compositions. The classification outputs were compared to those produced by MLAs, including random forest (RF) and support vector machine (SVM). The results presented that the three forest-type maps obtained by TWDTW, RF, and SVM have high consistency in spatial distribution. TWDTW outperformed SVM and RF with mean overall accuracy and mean kappa coefficient of 93.81% and 0.93, respectively, followed by RF and SVM. Compared with MLAs, TWDTW method achieved the higher classification accuracy than RF and SVM, with even less training data. This proved the robustness and less sensitivities to training samples of the TWDTW method when applied to mountain forest-type classifications.


2020 ◽  
Vol 12 (15) ◽  
pp. 2411 ◽  
Author(s):  
Thanh Noi Phan ◽  
Verena Kuch ◽  
Lukas W. Lehnert

Land cover information plays a vital role in many aspects of life, from scientific and economic to political. Accurate information about land cover affects the accuracy of all subsequent applications, therefore accurate and timely land cover information is in high demand. In land cover classification studies over the past decade, higher accuracies were produced when using time series satellite images than when using single date images. Recently, the availability of the Google Earth Engine (GEE), a cloud-based computing platform, has gained the attention of remote sensing based applications where temporal aggregation methods derived from time series images are widely applied (i.e., the use the metrics such as mean or median), instead of time series images. In GEE, many studies simply select as many images as possible to fill gaps without concerning how different year/season images might affect the classification accuracy. This study aims to analyze the effect of different composition methods, as well as different input images, on the classification results. We use Landsat 8 surface reflectance (L8sr) data with eight different combination strategies to produce and evaluate land cover maps for a study area in Mongolia. We implemented the experiment on the GEE platform with a widely applied algorithm, the Random Forest (RF) classifier. Our results show that all the eight datasets produced moderately to highly accurate land cover maps, with overall accuracy over 84.31%. Among the eight datasets, two time series datasets of summer scenes (images from 1 June to 30 September) produced the highest accuracy (89.80% and 89.70%), followed by the median composite of the same input images (88.74%). The difference between these three classifications was not significant based on the McNemar test (p > 0.05). However, significant difference (p < 0.05) was observed for all other pairs involving one of these three datasets. The results indicate that temporal aggregation (e.g., median) is a promising method, which not only significantly reduces data volume (resulting in an easier and faster analysis) but also produces an equally high accuracy as time series data. The spatial consistency among the classification results was relatively low compared to the general high accuracy, showing that the selection of the dataset used in any classification on GEE is an important and crucial step, because the input images for the composition play an essential role in land cover classification, particularly with snowy, cloudy and expansive areas like Mongolia.


Sign in / Sign up

Export Citation Format

Share Document