scholarly journals Extraction of Urban Information for Seismic Hazard and Risk Assessment in Lima, Peru Using Satellite Imagery

2013 ◽  
Vol 8 (2) ◽  
pp. 328-345 ◽  
Author(s):  
Masashi Matsuoka ◽  
◽  
Hiroyuki Miura ◽  
Saburoh Midorikawa ◽  
Miguel Estrada ◽  
...  

Lima City, Peru, is, like Japan, on the verge of a strike by a massive earthquake. Building inventory data for the city need to be created for earthquake damage estimation, so the city was subjected to the extraction of spatial distribution of building age from Landsat satellite time-series images and an assessing building height from ALOS/PRISM images. Interband calculation of Landsat time-series images gives various indices relevant to land covering. The transition of indices was evaluated to clarify urban sprawl taking place in the northern, southern, and eastern parts of Lima City. Built-up area data were created for buildings by age. The height of large-scale mid-to-highrise buildings was extracted by applying spatial filtering for a DSM (Digital Surface Model) generated from stereovision PRISM images. As a result, buildings with a small square measure, color similar to that of their surroundings, or complicated shapes turned out to be difficult to detect.

Author(s):  
Dinh Ho Tong Minh ◽  
Yen-Nhi NGO ◽  
Thu Trang Lê ◽  
Trung Chon Le ◽  
Hong Son Bui ◽  
...  

Ho Chi Minh City (HCMC), the most populous city and the economic center of Viet Nam, has faced ground subsidence in recent decades. This work aims at providing an unprecedented spatial extent coverage of the subsidence in HCMC in both horizontal and vertical components using Interferometric Synthetic Aperture Radar (InSAR) time series. For this purpose, an advanced InSAR technique PSDS (Permanent Scatterers and Distributed Scatterers) was applied to two big European Space Agency (ESA) Sentinel-1 datasets composed of 96 ascending and 202 descending images, acquired from 2014 to 2020 over HCMC area. A time series of 33 Cosmos SkyMED images was also used for comparison purpose. The combination of ascending and descending satellite passes allows the decomposition of the light of sight velocities into horizontal East-west and vertical components. By taking into account the presence of the horizontal East-west movement, our finding indicates that the precision of the decomposed vertical velocity can be improved up to 3 mm/year for Sentinel-1 data. The obtained results revealed that subsidence is most severe in areas along the Sai Gon river in the northwest-southeast axis and the southwest of the city with the maximum value up to 80 mm/year, consistent with findings in the literature. The magnitude of horizontal East-West velocities is relatively small and a large-scale westward motion can be observed in the northwest of the city at a rate of 2-5 mm/year. Together, these results reinforced the remarkable suitability of ESA's Sentinel-1 SAR for subsidence applications even for non-Europe countries such as Vietnam and Southeast Asia.


2014 ◽  
Vol 15 (1) ◽  
pp. 261-278 ◽  
Author(s):  
Long Yang ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Elie Bou-Zeid ◽  
Stephen M. Jessup ◽  
...  

Abstract In this study, observational and numerical modeling analyses based on the Weather Research and Forecasting Model (WRF) are used to investigate the impact of urbanization on heavy rainfall over the Milwaukee–Lake Michigan region. The authors examine urban modification of rainfall for a storm system with continental-scale moisture transport, strong large-scale forcing, and extreme rainfall over a large area of the upper Midwest of the United States. WRF simulations were carried out to examine the sensitivity of the rainfall distribution in and around the urban area to different urban land surface model representations and urban land-use scenarios. Simulation results suggest that urbanization plays an important role in precipitation distribution, even in settings characterized by strong large-scale forcing. For the Milwaukee–Lake Michigan region, the thermodynamic perturbations produced by urbanization on the temperature and surface pressure fields enhance the intrusion of the lake breeze and facilitate the formation of a convergence zone, which create favorable conditions for deep convection over the city. Analyses of model and observed vertical profiles of reflectivity using contoured frequency by altitude displays (CFADs) suggest that cloud dynamics over the city do not change significantly with urbanization. Simulation results also suggest that the large-scale rainfall pattern is not sensitive to different urban representations in the model. Both urban representations, the Noah land surface model with urban land categories and the single-layer urban canopy model, adequately capture the dominant features of this storm over the urban region.


Author(s):  
M. Toker ◽  
E. Çolak ◽  
F. Sunar

Abstract. Protected areas are important with land or water body ecosystems that have biodiversity, flora and fauna species. In Turkey, National Parks are one of the protected areas managed according to the National Parks Law No. 2873. Among them, the İğneada Floodplain Forests National Park, located in İğneada town in the province of Kırklareli, Turkey has been declared as a national park in 2007, and has an importance being a rare ecosystem, which consists of wetland, swamp, lakes and coastal sand dunes. Planning of Protected Areas can be done in a variety of ways, taking into account the balance of protection/use and should follow policies and guidelines. Today, for the sustainability and effective management of forest ecosystems, remote sensing technology provides an effective tool for assessing and monitoring ecosystem health at different temporal and spatial scales. In this study, potential temporal changes in the National Park were analyzed with Landsat satellite time series images using two different methods. First method, the Landtrendr algorithm (Landsat-based Detection of Trends in Disturbance and Recovery) developed for multitemporal satellite data, uses pixel values as input data and analysis them by using regression models to capture, label and map the changes. In this context, Landsat satellite time series images were taken quinquennial between 1987 and 2007 and biennially until 2017 for Landtrendr analysis (i.e. before and after its declaration as a National Park, respectively). As a second approach, the Google Earth Engine (GEE) cloud-based platform, which facilitates access to high-performance computing resources to process large long-term data sets, was used to analyze the impact of land cover changes. The results showed that the area was subjected to various pressures (i.e. due to illegal felling, pollution, etc.) until it was declared as a National park. Although there was general improvement and recovery after the region declared as a Park, it was seen that the sensitive dynamics of the region require continuous monitoring and protection using geo-information technologies.


2018 ◽  
Author(s):  
Laurent Courty

Flood is already one of the most common disaster at a global scale.With the combined effects of the continuing urbanization and ongoing climate change, the number of both inundation events and affectees is set to increase.Numerical flood simulation is a key tool to be better prepared to tackle those changes, as it allows us to evaluate the impacts of multiple weather and development scenarios at a reduced cost.In the past decades, flood models have become more reliable and accessible, leading them to be now part of the common toolbox of consulting engineers, public authorities and academics.However, correctly model the hydrological processes occurring in a urban environment is a challenging task.A successful urban flood model should be able to resolve the overland flows, the drainage network flows, and the complex interactions that are taking place between those two systems.Furthermore, the combination of the large scale of modern cities and the fine resolution needed to adequately model the overland flows requires large computational resources, and limits the models usefulness for advanced applications, like ensemble analysis.The present describes a new, open-source, coupled flood model that takes advantage of recent advances in urban inundation modelling. The surface model of the developed tool employs a simplified numerical scheme that allows fast simulation at high resolution.The drainage network model is the well known SWMM, developed by the EPA.The simulation of the coupling between the drainage and the surface models is based on the knowledge recently acquired by physical modelling.The developed surface model is first evaluated against a combination of analytic solutions and a well-known similar model.It is then employed to the reproduction of an historical flood in the city of Hull, UK.The coupled surface-drainage model is first compared to similar commercial and academic models.Then, the coupled model is applied to an historical flood in the city of Kolkata, India.In all those tests, the developed software gives adequate results and paves the way to its use for flood risk mapping and drainage network design.


Author(s):  
Michael R. Acton ◽  
Phil J. Baldwin ◽  
Tim R. Baldwin ◽  
Eric E. R. Jager

PIPESAFE is a knowledge based hazard and risk assessment package for gas transmission pipelines, which has been developed jointly by an international group of gas transmission companies. PIPESAFE has been developed from the BG (formerly British Gas) TRANSPIRE package, to produce an integrated assessment tool for use on PCs. which includes a range of improvements and additional models backed by large scale experimentation. This paper describes the development of the PIPESAFE package, and the formulation and validation of the mathematical models included within it.


Author(s):  
Christian Merkenschlager ◽  
Stephanie Koller ◽  
Christoph Beck ◽  
Elke Hertig

AbstractWithin the scope of urban climate modeling, weather analogs are used to downscale large-scale reanalysis-based information to station time series. Two novel approaches of weather analogs are introduced which allow a day-by-day comparison with observations within the validation period and which are easily adaptable to future periods for projections. Both methods affect the first level of analogy which is usually based on selection of circulation patterns. First, the time series were bias corrected and detrended before subsamples were determined for each specific day of interest. Subsequently, the normal vector of the standardized regression planes (NVEC) or the center of gravity (COG) of the normalized absolute circulation patterns was used to determine a point within an artificial coordinate system for each day. The day(s) which exhibit(s) the least absolute distance(s) between the artificial points of the day of interest and the days of the subsample is/are used as analog or subsample for the second level of analogy, respectively. Here, the second level of analogy is a second selection process based on the comparison of gridded temperature data between the analog subsample and the day of interest. After the analog selection process, the trends of the observation were added to the analog time series. With respect to air temperature and the exceedance of the 90th temperature quantile, the present study compares the performance of both analog methods with an already existing analog method and a multiple linear regression. Results show that both novel analog approaches can keep up with existing methods. One shortcoming of the methods presented here is that they are limited to local or small regional applications. In contrast, less pre-processing and the small domain size of the circulation patterns lead to low computational costs.


2021 ◽  
Author(s):  
Simon Allen ◽  
Tobias Bolch ◽  
Holger Frey ◽  
Guoqing Zhang ◽  
Guoxiong Zheng ◽  
...  

<p>Widespread retreat of glaciers has accelerated over recent decades in most mountain regions as a consequence of global warming, leading to rapid expansion of glacial lakes, bringing related risks.<sup></sup>When water is suddenly released, Glacial Lake Outburst Floods (GLOFs) can devastate lives and livelihoods up to hundreds of kilometres downstream of their source. This threat is most apparent in High Mountain Asia (HMA), home to >200 million inhabitants, and where >150 GLOFs have been recorded from moraine dammed lakes alone. Here we reflect on our recent experience working across HMA to outline key learnings, challenges and perspectives in applying GLOF hazard and risk assessment at various scales, with an emphasis on how results have or can inform local response planning.</p><p>The number of large-scale assessment studies has increased exponentially over recent years, often giving inconsistent results in terms of what are considered potentially dangerous lakes. This makes it difficult for authorities and funding agencies to identify where more detailed hazard mapping and risk management strategies should be targeted, especially in cases where the science may not be aligned with local understanding and experience. We therefore recommend a consensus approach, drawing across multiple studies, and including the knowledge of local authorities to arrive at a final listing of high priority lakes which may be subject to further monitoring, Early Warning Systems and other response strategies. In our stakeholder interactions, we have particularly emphasised that GLOFs from even relatively small lakes can lead to significant damages when combined with other hazardous processes, e.g., the case of 2013 Chorabari GLOF combining with monsoon flooding and landslides in Northern India, or the 2016 outburst from Gongbatongshaco, Chinese Himalaya, Tibet, where erosion and bulking was significantly enhanced as a consequence of the Gorkha earthquake occurring a year earlier.</p><p>Looking to the future, several assessment studies have now combined modelling of glacier bed topography to identify where new lakes could emerge in the future, and even combined this information with changing exposure levels (e.g., planned hydropower development). However, there are challenges around communicating these uncertain future hazards and risks, and to what extent they should be considered in planning. In the transboundary Poiqu basin originating in Tibet, we have focussed on worst-case scenario modelling for such a future lake, demonstrating that flow depths and velocities would exceed the threat from current lakes, and the peak wave would reach the border with Nepal up to 20 minutes faster. Open questions remain around how triggering processes will evolve in the future. Most assessments currently focus on cascading process chains triggered by ice or rockfall, whereas under a wetter and warmer future climate, heavy rainfall and snowmelt as a direct or indirect trigger could become increasingly important. Further, major uncertainties arise from socio-economic developments and related changes in exposure and vulnerability, that could, in some regions, be the most significant drivers of future GLOF risk. Ultimately, forward-looking, GLOF hazard and risk assessment must ensure that response strategies remain robust in the face of ongoing environmental and societal change.</p>


2021 ◽  
Author(s):  
Konstantinos Politakos ◽  
Stavros Stagakis ◽  
Nektarios Chrysoulakis

<p>Urban areas around the globe are growing rapidly and as a consequence the anthropogenic effects on the environment are ever-increasing. Understanding the dynamics, procedures and mechanics behind urban greenhouse gas emissions is a challenge for the scientific community. This study investigates the variability of urban CO<sub>2</sub> emissions in the city centre of Heraklion, a typical Mediterranean city in Greece, during a four-year period with gradual changes in the traffic regulations and changes in traffic patterns due to the recent restriction measures imposed to limit the spread of the COVID-19 pandemic. The CO<sub>2</sub> flux (Fc) was measured using the Eddy Covariance (EC) method with a single tower-based system, permanently installed in the centre of the city. Fc was calculated at a 30-min time step and the time-series were quality-controlled and gap-filled using a moving look-up table (mLUT) technique. Fc time series were then aggregated to monthly and yearly emissions totals. Annual flux source area was estimated with the Flux Footprint Prediction (FFP) model, parameterized using measured atmospheric parameters and urban morphological parameters extracted from a Digital Surface Model. The source area was characterized by complex urban morphology and land use types. Specifically, at North of the tower a commercial zone is located, where significantly higher Fc patterns were detected, compared to South, where a residential area dominates. A gradual reduction to CO<sub>2</sub> emissions has been observed since 2016, due to urban planning interventions related to pedestalization of extended areas in the city centre and traffic regulation. During the COVID-19 lockdown period in the Spring of 2020, the diurnal Fc patterns and the monthly aggregated Fc showed significant reductions in the order of 70 % compared to the previous years. Fc values returned to the previous years’ levels with the end of the lock-down in the summer 2020, as it was expected. Finally, during the second lock-down, started in Greece in November 2020, the CO<sub>2</sub> emissions were higher compared to the first lock-down, reflecting a higher level of mobility in Heraklion centre.</p>


Author(s):  
С. Л. Подвальный ◽  
О. А. Сотникова ◽  
Я. А. Золотухина

Постановка задачи. В настоящее время формирование современной комфортной городской среды приобретает особое социально-экономическое значение и выдвигается в число приоритетных государственных масштабных программ. В связи с этим необходимо разработать концепцию благоустройства ключевого общественного пространства, а именно: определить основные и сопутствующие функции данной территории, создать эскизное предложение проекта благоустройства с учетом всех необходимых норм и стандартов, внедрить современные технологии. Результаты. Выполнен эскизный дизайн-проект «Аллеи архитекторов» по ул. Орджоникидзе г. Воронеж, включающий в себя основные элементы по зонированию территории, проектированию акцентных объектов и внедрению инновационных технологий «умного города», позволяющих повысить уровень комфорта горожан. Выводы. Благоустройство населенных мест приобретает особое значение в условиях дискомфорта среды. С выполнением комплекса мероприятий, направленных на благоустройство, и с внедрением современных технологий значительно улучшается экологическое состояние, внешний облик города. Оздоровление и модернизация среды, которая окружает человека в городе, благотворно влияет на психофизическое состояние, что особенно важно в период интенсивного роста городов. Statement of the problem. Currently the formation of the modern comfortable urban environment is gaining a special social and economic value and moving forward in the priorities of state large-scale programs. The purpose of development of the concept of improvement of public space is definition of the main and accompanying functions of this territory, design of the outline offer of the project of improvement considering all necessary norms and standards and implementation of modern technologies. Results. The conceptual project of “Alley of Architects” includes the basic elements of territory zoning, design of accent objects and implementation of technologies of a “smart-city”. These elements allow one to increase the level of comfort of inhabitants. Conclusions. Improvement of the inhabited places is of particular importance in the conditions of discomfort of the environment. Carrying out a complex of the actions directed to gardening and improvement, introducing modern technologies, the ecological condition, the physical appearance of the city considerably improves. Improvement and modernization of the environment which surrounds the person in the city influences a psychophysical state well that especially important during intensive growth of the cities.


Sign in / Sign up

Export Citation Format

Share Document