irs p6
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Sheron Henry Christy

Remote sensing is a very good alternative technology for managing natural resources as compared to conventional technologies. This paper highlights the various challenges in UAS sensors. Comparison of IRS-P6 and Land Sat sensors is described from accuracy point of view by covering same areas by both the sensors which gives the performance features of both the sensors. Inter sensor calibration is depicted to realize its importance in applications like precision farming, disaster management, etc. requiring multiple dated satellite images.


2021 ◽  
pp. 23-29
Author(s):  
RAMESHWAR SINGH

The agro-eco-sub region (AESR) 4.2 encompasses Aravalli foot hills, central Rajasthan plains and adjoining areas. Visual interpretation of geo-coded satellite data (IRS-P6, LISS IV MX) on the same scale was done before starting the field work. Based on the interpretative units a high intensity detailed soil survey was carried out in cluster of ten villages of Bhadesar tehsil of Chittaurgarh district on cadastral map (1:4000 scale) and the soils were characterized with respect to landforms. In all, 14 soil series were established and assessed for soil site suitability for maize, wheat, mustard and soybean. Daulatpura-c series soils are suitable for maize, mustard, soybean, and Daulatpura-d soils for soybean and moderately suitable for other crops. Soils of Bagund and Narbadiya-a series are moderately suitable for maize and marginally suitable for other crops. The soils of Bhadsoda-b series are marginally suitable only for mustard but moderately suitable for all other crops. Soils of Parliya series are moderately suitable only for mustard crop and marginally suitable for remaining crops. The soils of Guda series are marginally suitable for maize, wheat, mustard but not suitable for soybean. The soils of Nardhari-a and Nardhari-b are moderately suitable, Daulatpura-b, Bhadsoda-a and Narbadiya-b are marginally suitable whereas soils of Madanpura and Daulatpura are not suitable for all the crops due to limitations of shallow soil depth.


2019 ◽  
Vol 8 (2) ◽  
pp. 3753-3755

The district Gurugram in the state Haryana has seen significant extension & development during the last few years. In this paper, the change in land-use/cover has been estimated with time range of 2007 - 2017 and the change detection was quantified. The land-use/cover data generated through satellite imagery has been classified into five major classes i.e., (i) Built-up land (ii) Water Bodies (iii) Barren Land (iv) Agricultural Land (v) Vegetation. The investigation was helped out through Geoinformatics approach by using IRS-P6- LISS-III sensor of 2007 and IRS-P6-LISS-IV sensor of 2017. Observing of land-use/spread mirrored that changes were more noteworthy in degree over the time range of 10 years in the land under various classes. The most sensational changes are the increase in built-up land and barren land. Apart from this decrease in agricultural, water bodies and vegetation cover area also. Results demonstrates an expansive change in the territory of various land use classifications amid the period from 2007 to 2017.The agriculture land covering an area of about 55.27% in 2007 reduced to 43.42% in 2017. The built up area increased from 15.97 % in 2007 to 30.23 in 2017. The barren land area increased from 6.45 % in 2007 to 16.97 in 2017 The Water bodies decreased from 4.65 % in 2007 to 1.05 % in 2017. The vegetation area has also decreased from 17.66 % in 2007 to 8.33 % in 2017. Urban extension and various anthropogenic exercises have brought genuine misfortunes of agricultural land, vegetation and water bodies.


Agropedology ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
R.K. Jena ◽  
◽  
V.P. Duraisami ◽  
R. Sivasamy ◽  
S. Shanmugasundaram ◽  
...  

The Meghalaya plateau occupying a major portion of entire state of Meghalaya remains as an important part of the ancient Deccan plateau. A detailed soil survey (1:10,000 scale) of the Jirang block of Ri-Bhoi district was carried out using IRS-P6 LISS IV and Cartosat-1 images. Typical pedons representing major landforms of the study area viz., denudational hills, plateau and inter hill valley plain developed from granite–gneiss occurring under varying land use were characterized, classified and assessed. The soils were deep to very deep, dark grayish brown to red in colour, extremely acid to moderately acid in reaction and high in organic carbon; the latter decreased with increase in depth. Soils on high denudational hills, highly dissected upper and lower plateau and lowly dissected lower plateau are highly weathered (kandic horizons) with base saturation <35% and are classified to Ultisols. Soils on low denudational hills are highly weathered Alfisols. Soils of moderately dissected lower plateau and those on upper valley region are both Alfisols, but the latter has lower base saturation than the former. The soils of the lower valley are Alfisols with an aquic moisture regime.


2019 ◽  
Vol 47 (8) ◽  
pp. 1275-1286 ◽  
Author(s):  
S. Uma Maheswaran ◽  
S. Anbazhagan ◽  
K. Tamilarasan ◽  
C. Kasilingam ◽  
M. Chinnamuthu

2019 ◽  
Vol 11 (1) ◽  
pp. 113-126
Author(s):  
بیژن یونسی ◽  
ناصر احمدی ثانی ◽  
سوران شرفی
Keyword(s):  

2018 ◽  
Vol 115 (12) ◽  
pp. 2301 ◽  
Author(s):  
Biswadip Gharai ◽  
P. V. N. Rao ◽  
C. B. S. Dutt

2018 ◽  
Vol 8 (2) ◽  
pp. 275-285
Author(s):  
Shridhar Digambar Jawak ◽  
Meghna Sengupta ◽  
Alvarinho Joaozinho Luis

This study discusses the calving event took place in Prydz Bay of East Antarctica during the epoch of 2013–2015 using high resolution multispectral data from Indian Linear Imaging Self Scanning Sensor (LISS-IV) aboard IRS-P6 satellite. The present study has been conducted on Larsemann Hills, Prydz Bay, East Antarctica. The two LISS-IV images (5.8 m spatial resolution) acquired specifically 384 days apart (December 31, 2013 and January 19, 2015) were utilized to study the significant changes that have occurred in icebergs during this short epoch. A total of 369 common icebergs present in both images were identified for analysing the changes in their dimensions because of surface melting. All of these icebergs were found to have lost mass because of surface melting and ocean forced base melting; therefore, they have reduced in dimension depicted by 12.51% lapse in terms of surface area. In addition, the coastline was visually observed to have retracted, instigated by calving events from the polar ice sheet and generation of new icebergs in Prydz Bay. The average drift distance of these newly formed icebergs from the coastline was found to be 51.59 m. Our analysis estimates that the total number of icebergs decreased by 70, suggesting either the complete disintegration or significant drifting of these icebergs away from the coast during 2013–2015 period.


Sign in / Sign up

Export Citation Format

Share Document