scholarly journals Braided autoequivalences and the equivariant Brauer group of a quasitriangular Hopf algebra

2016 ◽  
Vol 445 ◽  
pp. 244-279 ◽  
Author(s):  
Jeroen Dello ◽  
Yinhuo Zhang
1999 ◽  
Vol 125 (1) ◽  
pp. 151-192 ◽  
Author(s):  
S. MAJID

We introduce a quasitriangular Hopf algebra or ‘quantum group’ U(B), the double-bosonization, associated to every braided group B in the category of H-modules over a quasitriangular Hopf algebra H, such that B appears as the ‘positive root space’, H as the ‘Cartan subalgebra’ and the dual braided group B* as the ‘negative root space’ of U(B). The choice B=Uq(n+) recovers Lusztig's construction of Uq(g); other choices give more novel quantum groups. As an application, our construction provides a canonical way of building up quantum groups from smaller ones by repeatedly extending their positive and negative root spaces by linear braided groups; we explicitly construct Uq(sl3) from Uq(sl2) by this method, extending it by the quantum-braided plane. We provide a fundamental representation of U(B) in B. A projection from the quantum double, a theory of double biproducts and a Tannaka–Krein reconstruction point of view are also provided.


1997 ◽  
Vol 09 (03) ◽  
pp. 371-395
Author(s):  
Florian Nill

We give a review and some new relations on the structure of the monodromy algebra (also called loop algebra) associated with a quasitriangular Hopf algebra H. It is shown that as an algebra it coincides with the so-called braided group constructed by S. Majid on the dual of H. Gauge transformations act on monodromy algebras via the coadjoint action. Applying a result of Majid, the resulting crossed product is isomorphic to the Drinfeld double [Formula: see text]. Hence, under the so-called factorizability condition given by N. Reshetikhin and M. Semenov–Tian–Shansky, both algebras are isomorphic to the algebraic tensor product H ⊗ H. It is indicated that in this way the results of Alekseev et al. on lattice current algebras are consistent with the theory of more general Hopf spin chains given by K. Szlachányi and the author. In the Appendix the multi-loop algebras ℒm of Alekseev and Schomerus [3] are identified with braided tensor products of monodromy algebras in the sense of Majid, which leads to an explanation of the "bosonization formula" of [3] representing ℒm as H ⊗…⊗ H.


2019 ◽  
Vol 21 (04) ◽  
pp. 1850045 ◽  
Author(s):  
Robert Laugwitz

We show that for dually paired bialgebras, every comodule algebra over one of the paired bialgebras gives a comodule algebra over their Drinfeld double via a crossed product construction. These constructions generalize to working with bialgebra objects in a braided monoidal category of modules over a quasitriangular Hopf algebra. Hence two ways to provide comodule algebras over the braided Drinfeld double (the double bosonization) are provided. Furthermore, a map of second Hopf algebra cohomology spaces is constructed. It takes a pair of 2-cocycles over dually paired Hopf algebras and produces a 2-cocycle over their Drinfeld double. This construction also has an analogue for braided Drinfeld doubles.


Author(s):  
Shahn Majid

AbstractLet f: H1 → H2be any pair of quasitriangular Hopf algebras over k with a Hopf algebra map f between them. We construct in this situation a quasitriangular Hopf algebra B(H1, f, H2) in the braided monoidal category of H1-modules. It consists in the same algebra as H2 with a modified comultiplication and has a quasitriangular structure given by the ratio of those of H1 and H2. This transmutation procedure trades a non-cocommutative Hopf algebra in the category of k-modules for a more cocommutative object in a more non-commutative category. As an application, every Hopf algebra containing the group algebra of ℤ2 becomes transmuted to a super-Hopf algebra.


2013 ◽  
Vol 12 (06) ◽  
pp. 1250224
Author(s):  
B. FEMIĆ

With the motivation of giving a more precise estimation of the quantum Brauer group of a Hopf algebra H over a field k we construct an exact sequence containing the quantum Brauer group of a Hopf algebra in a certain braided monoidal category. Let B be a Hopf algebra in [Formula: see text], the category of Yetter–Drinfel'd modules over H. We consider the quantum Brauer group [Formula: see text] of B in [Formula: see text], which is isomorphic to the usual quantum Brauer group BQ(k; B ⋊ H) of the Radford biproduct Hopf algebra B ⋊ H. We show that under certain symmetricity condition on the braiding in [Formula: see text] there is an inner action of the Hopf automorphism group of B on the former. We prove that the subgroup [Formula: see text] — the Brauer group of module algebras over B in [Formula: see text] — is invariant under this action for a family of Radford biproduct Hopf algebras. The analogous invariance we study for BM(k; B ⋊ H). We apply our recent results on the latter group and generate a new subgroup of the quantum Brauer group of B ⋊ H. In particular, we get new information on the quantum Brauer groups of some known Hopf algebras.


Sign in / Sign up

Export Citation Format

Share Document