scholarly journals Quiver representations in abelian categories

2020 ◽  
Vol 541 ◽  
pp. 35-50 ◽  
Author(s):  
Sergey Mozgovoy
2019 ◽  
Vol 63 (1) ◽  
pp. 67-90 ◽  
Author(s):  
Sergio Estrada ◽  
Marco A. Pérez ◽  
Haiyan Zhu

AbstractBalanced pairs appear naturally in the realm of relative homological algebra associated with the balance of right-derived functors of the Hom functor. Cotorsion triplets are a natural source of such pairs. In this paper, we study the connection between balanced pairs and cotorsion triplets by using recent quiver representation techniques. In doing so, we find a new characterization of abelian categories that have enough projectives and injectives in terms of the existence of complete hereditary cotorsion triplets. We also provide a short proof of the lack of balance for derived functors of Hom computed using flat resolutions, which extends the one given by Enochs in the commutative case.


2018 ◽  
Vol 17 (04) ◽  
pp. 1850062
Author(s):  
Olivier Verdier

Matrix pencils, or pairs of matrices, are used in a variety of applications. By the Kronecker decomposition theorem, they admit a normal form. This normal form consists of four parts, one part based on the Jordan canonical form, one part made of nilpotent matrices, and two other dual parts, which we call the observation and control part. The goal of this paper is to show that large portions of that decomposition are still valid for pairs of morphisms of modules or abelian groups, and more generally in any abelian category. In the vector space case, we recover the full Kronecker decomposition theorem. The main technique is that of reduction, which extends readily to the abelian category case. Reductions naturally arise in two flavors, which are dual to each other. There are a number of properties of those reductions which extend remarkably from the vector space case to abelian categories. First, both types of reduction commute. Second, at each step of the reduction, one can compute three sequences of invariant spaces (objects in the category), which generalize the Kronecker decomposition into nilpotent, observation and control blocks. These sequences indicate whether the system is reduced in one direction or the other. In the category of modules, there is also a relation between these sequences and the resolvent set of the pair of morphisms, which generalizes the regular pencil theorem. We also indicate how this allows to define invariant subspaces in the vector space case, and study the notion of strangeness as an example.


2021 ◽  
Vol 28 (01) ◽  
pp. 143-154
Author(s):  
Yiyu Li ◽  
Ming Lu

For any positive integer [Formula: see text], we clearly describe all finite-dimensional algebras [Formula: see text] such that the upper triangular matrix algebras [Formula: see text] are piecewise hereditary. Consequently, we describe all finite-dimensional algebras [Formula: see text] such that their derived categories of [Formula: see text]-complexes are triangulated equivalent to derived categories of hereditary abelian categories, and we describe the tensor algebras [Formula: see text] for which their singularity categories are triangulated orbit categories of the derived categories of hereditary abelian categories.


2011 ◽  
pp. 227-231
Author(s):  
J. Adamek ◽  
J. Rosicky ◽  
E. M. Vitale ◽  
F. W. Lawvere
Keyword(s):  

2018 ◽  
Vol 2020 (3) ◽  
pp. 914-956 ◽  
Author(s):  
Dylan Rupel ◽  
Salvatore Stella ◽  
Harold Williams

Abstract The cluster algebra of any acyclic quiver can be realized as the coordinate ring of a subvariety of a Kac–Moody group—the quiver is an orientation of its Dynkin diagram, defining a Coxeter element and thereby a double Bruhat cell. We use this realization to connect representations of the quiver with those of the group. We show that cluster variables of preprojective (resp. postinjective) quiver representations are realized by generalized minors of highest-weight (resp. lowest-weight) group representations, generalizing results of Yang–Zelevinsky in finite type. In type $A_{n}^{\!(1)}$ and finitely many other affine types, we show that cluster variables of regular quiver representations are realized by generalized minors of group representations that are neither highest- nor lowest-weight; we conjecture this holds more generally.


2019 ◽  
Vol 2019 (754) ◽  
pp. 143-178 ◽  
Author(s):  
Sven Meinhardt ◽  
Markus Reineke

Abstract The main result of this paper is the statement that the Hodge theoretic Donaldson–Thomas invariant for a quiver with zero potential and a generic stability condition agrees with the compactly supported intersection cohomology of the closure of the stable locus inside the associated coarse moduli space of semistable quiver representations. In fact, we prove an even stronger result relating the Donaldson–Thomas “function” to the intersection complex. The proof of our main result relies on a relative version of the integrality conjecture in Donaldson–Thomas theory. This will be the topic of the second part of the paper, where the relative integrality conjecture will be proven in the motivic context.


1979 ◽  
pp. 267-323
Author(s):  
Nicolae Popescu ◽  
Liliana Popescu
Keyword(s):  

2012 ◽  
Vol 21 (6) ◽  
pp. 523-543
Author(s):  
Julia Goedecke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document