The influence of inducing magnetic field on the magnetoelectric effect of particulate magnetoelectric composites

2015 ◽  
Vol 630 ◽  
pp. 183-188 ◽  
Author(s):  
Yike Zeng ◽  
Guoqiang Bao ◽  
Jinqiao Yi ◽  
Guangzu Zhang ◽  
Shenglin Jiang
2015 ◽  
Vol 119 ◽  
pp. 738-748 ◽  
Author(s):  
Guo-Liang Yu ◽  
Huai-Wu Zhang ◽  
Fei-Ming Bai ◽  
Yuan-Xun Li ◽  
Jie Li

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Xudong Shen ◽  
Long Zhou ◽  
Yisheng Chai ◽  
Yan Wu ◽  
Zhehong Liu ◽  
...  

Abstract All the magnetoelectric properties of scheelite-type DyCrO4 are characterized by temperature- and field-dependent magnetization, specific heat, permittivity, electric polarization, and neutron diffraction measurements. Upon application of a magnetic field within ±3 T, the nonpolar collinear antiferromagnetic structure leads to a large linear magnetoelectric effect with a considerable coupling coefficient. An applied electric field can induce the converse linear magnetoelectric effect, realizing magnetic field control of ferroelectricity and electric field control of magnetism. Furthermore, a higher magnetic field (>3 T) can cause a metamagnetic transition from the initially collinear antiferromagnetic structure to a canted structure, generating a large ferromagnetic magnetization up to 7.0 μB f.u.−1. Moreover, the new spin structure can break the space inversion symmetry, yielding ferroelectric polarization, which leads to coupling of ferromagnetism and ferroelectricity with a large ferromagnetic component.


2014 ◽  
Vol 59 (3) ◽  
pp. 1011-1015
Author(s):  
P. Guzdek ◽  
M. Sikora ◽  
Ł. Góra ◽  
Cz. Kapusta

Abstract The magnetoelectric effect in multiferroic materials has been widely studied for its fundamental interest and practical applications. The magnetoelectric effect observed for single phase materials like Cr2O3, BiFeO3, and Pb(Fe0.5Nb0.5)O3 is usually small. A much larger effect can be obtained in composites consisting of magnetostrictive and piezoelectric phases. This paper investigates the magnetoelectric effect of a multilayer (laminated) structure consisting of 6 nickel ferrite and 7 PFN relaxor layers. It describes the synthesis and tape casting process for Ni0.3Zn0.62Cu0.08Fe2O4 ferrite and relaxor PbFe0.5Nb0.5O3 (PFN). Magnetic hysteresis, ZFC - FC curves and dependencies of magnetization versus temperature for PFN relaxor and magnetoelectric composite were measured with a vibrating sample magnetometer (VSM) in an applied magnetic field up to 85 kOe at a temperature range of 10 – 400 K. Magnetoelectric effect at room temperature was investigated as a function of a static magnetic field (0.3 - 6.5 kOe) and the frequency of sinusoidal magnetic field (0.01 - 6.5 kHz). At lower magnetic field, the magnetoelectric coefficient increases slightly before reaching a maximum and then decreases. The magnetoelectric coefficient aME increases continuously as the frequency is raised, although this increase is less pronounced in the 1-6.5 kHz range. Maximum values of the magnetoelectric coefficient attained for the layered composites exceed about 50 mV/(Oe cm).


2015 ◽  
Vol 233-234 ◽  
pp. 357-359 ◽  
Author(s):  
Dmitry Burdin ◽  
Dmitry Chashin ◽  
Nikolay Ekonomov ◽  
Yuri Fetisov

Temperature characteristics of resonant magnetoelectric effect in bilayer structures consisting of langatate, lead zirconate titanate, nickel, and amorphous ferromagnetic Metglas layers have been investigated. The measurements were performed in the temperature range of 150-400 K. The influence of the ferromagnetic and piezoelectric layer’s parameters on the temperature dependence of resonant frequency and magnetoelectric coefficient αE has been demonstrated. The results can be used to develop magnetoelectric magnetic field sensors.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2866 ◽  
Author(s):  
Caijiang Lu ◽  
Hai Zhou ◽  
Aichao Yang ◽  
Zhengyu Ou ◽  
Feihu Yu ◽  
...  

In this paper, we report the nonlinear magnetoelectric response in a homogenous magnetostrictive/piezoelectric laminate material. The proposed magnetoelectric stack Fe73.5Cu1Nb3Si13.5B9/piezofiber is made up of high-permeability magnetostrictive Fe73.5Cu1Nb3Si13.5B9 foils and a piezoelectric Pb(Zr, Ti)O3 fiber composite. The time dependence of magnetoelectric interactions in the Fe73.5Cu1Nb3Si13.5B9/piezofiber structure driven by pulsed magnetic field was investigated in detail. The experimental results show that the magnetoelectric effect is strongly dependent on the external bias magnetic and pulsed magnetic field parameters. To detect the amplitude of a pulsed magnetic field, the output sensitivity reaches 17 mV/Oe, which is excited by a 100 μs width field. In addition, to measure the pulsed width, the output sensitivity reaches 5.4 mV/μs in the range of 0–300 μs. The results show that the proposed Fe73.5Cu1Nb3Si13.5B9/piezofiber sensor is ideally suited for pulsed magnetic field measurement.


2014 ◽  
Vol 14 (7) ◽  
pp. 2252-2256 ◽  
Author(s):  
Yuri K. Fetisov ◽  
Dmitri A. Burdin ◽  
Dmitri V. Chashin ◽  
Nikolai A. Ekonomov

2013 ◽  
Vol 103 (21) ◽  
pp. 212902 ◽  
Author(s):  
Yuting Liu ◽  
Jie Jiao ◽  
Jiashuai Ma ◽  
Bo Ren ◽  
Lingying Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document