Relative crystal stability of AlxFeNiCrCo high entropy alloys from XRD analysis and formation energy calculation

2015 ◽  
Vol 648 ◽  
pp. 307-312 ◽  
Author(s):  
K. Jasiewicz ◽  
J. Cieslak ◽  
S. Kaprzyk ◽  
J. Tobola
2014 ◽  
Vol 789 ◽  
pp. 79-83 ◽  
Author(s):  
Xing Yan Gao ◽  
Ning Liu ◽  
Yun Xue Jin ◽  
Zhi Xuan Zhu

The effects of Co contents on the microstructure characteristic and phase structure of CoxCrCuFeNi high-entropy alloys were investigated by SEM, EDS and XRD. The microstructures consisted of dendrites and many nanoprecipitations in the interdendritic. Increase Co contents,the size of nanoprecipitated phase in the interdendritic firstly increased and then decreased slightly. According to XRD analysis, two simple FCC phases, dendrite phase and Cu-rich interdendritic phase were found. As a result of slow diffusion, supersaturated solid solution was formed during solidification and then nanophase was precipitated during the following cooling process. The results of EDS revealed that Fe、Co and Cr were rich in dendrites, while Cu was rich at the interdendritic. For element Ni, which was rich in dendrites when x≤1.0, but was almost the normal value in dendrites for x>1.0. The reason for segregation was related to the positive mixing enthalpy between elements. The contents of Co had little impact on the hardness of CoxCrCuFeNi high-entropy alloys according to micro-hardness testing.


2016 ◽  
Vol 879 ◽  
pp. 1350-1354 ◽  
Author(s):  
Takeshi Nagase ◽  
Mamoru Takemura ◽  
Mitsuaki Matsumuro

The microstructure of rapidly solidified melt-spun ribbon in AlCoCrFeNi2.1 eutectic high entropy alloys (EHEAs) was investigated for clarifying the effect of rapid solidification on the constituent phases and microstructure of specimens formed through solidification. XRD analysis indicates that the melt-spun ribbons were composed of a mixture of fcc and bcc phases. The rapidly solidified melt-spun ribbon shows a fine poly-crystalline structure with fcc matrix phase and crystalline precipitates in the grain boundary, indicating that the solidification structure in the melt-spun ribbon was significantly different from that obtained by conventional casting processes.


2019 ◽  
Author(s):  
Jack Pedersen ◽  
Thomas Batchelor ◽  
Alexander Bagger ◽  
Jan Rossmeisl

Using the high-entropy alloys (HEAs) CoCuGaNiZn and AgAuCuPdPt as starting points we provide a framework for tuning the composition of disordered multi-metallic alloys to control the selectivity and activity of the reduction of carbon dioxide (CO2) to highly reduced compounds. By combining density functional theory (DFT) with supervised machine learning we predicted the CO and hydrogen (H) adsorption energies of all surface sites on the (111) surface of the two HEAs. This allowed an optimization for the HEA compositions with increased likelihood for sites with weak hydrogen adsorption{to suppress the formation of molecular hydrogen (H2) and with strong CO adsorption to favor the reduction of CO. This led to the discovery of several disordered alloy catalyst candidates for which selectivity towards highly reduced carbon compounds is expected, as well as insights into the rational design of disordered alloy catalysts for the CO2 and CO reduction reaction.


2020 ◽  
Vol 2020 (4) ◽  
pp. 16-22
Author(s):  
A.I. Ustinov ◽  
◽  
V.S. Skorodzievskii ◽  
S.A. Demchenkov ◽  
S.S. Polishchuk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document