interdendritic phase
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1477
Author(s):  
Wenrui Wang ◽  
Qi Sun ◽  
Dingzhi Wang ◽  
Junsong Hou ◽  
Wu Qi ◽  
...  

In this paper, the ((CoCrFeNi)95Nb5)100−xMox (x = 1, 1.5 and 2) high-entropy alloy (HEA) coatings were fabricated on the substrate of 45# steel by laser cladding process under different laser beam power. The influence of laser beam power and molybdenum element content on the microstructure and microhardness of the HEA coatings was investigated. Results show that the HEA coatings were composed of face-centered cubic (FCC) phase and Laves phase, had low porosity, and bonded well to the substrate. The Mo1 coating is composed of cellular dendritic structures and columnar dendritic structures. With the increase of molybdenum element content, the columnar dendritic structures disappeared, the grains are refined, and the arrangement of grains is more compact. The volume fraction of the interdendritic phase under the laser beam power of 800 W was small and irregular. After the laser beam power was increased to 1000 W, the volume fraction of the interdendritic phase was increased. Under the laser beam power of 1200 W, the volume fraction of the interdendritic phase was small again. Therefore, the coatings fabricated under the laser beam power of 1000 W had a larger volume fraction of the interdendritic phase and higher microhardness. With the increase in molybdenum content, the grain changed from columnar dendrite to cellular dendrite, and the microhardness of the coating increased. The characteristics of the laser cladding process, the formation of Laves phase, and the fine grain strengthening lead to high microhardness of the coatings.


2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Menglan Shen ◽  
Yuanming Huo ◽  
Tao He ◽  
Yong Xue ◽  
Yujia Hu ◽  
...  

The phase component, microstructure and compressive properties of a novel 3d transition metal high entropy alloy, AlCoCrCuTi, in as-cast and annealed conditions were investigated. The phases of the as-cast AlCoCrCuTi alloy are composed of primary phase AlCo2Ti (L21), eutectic structure {AlCo2Ti (L21)+ Al3Cr7 (BCC)} and interdendritic phase AlCu2Ti (L21). Through annealing, a rosette feature of the as-cast AlCo2Ti + Al3Cr7 eutectic structure is deteriorated due to the lath-like Al3Cr7 changed to finely-divided one. In mechanics performance, the as-cast alloy exhibits a balanced synergy in hardness (593±37 HV) and ultimate strength (745 MPa), while the hardness of the annealed alloy slightly increases to 647±23 HV at the expense of the ultimate strength. Moreover, the alloy either in as-cast or annealed conditions unfortunately display a typically brittle character. The deficiency of elongation might stem from the diversified brittle and hard phases incorporated, such as AlCo2Ti + Al3Cr7.


2014 ◽  
Vol 782 ◽  
pp. 623-626 ◽  
Author(s):  
Mária Kollárová ◽  
Lucia Hrabčáková ◽  
Juraj Graban ◽  
Marta Šohajová

In the paper mutual comparison of zinc coatings enriched with small additions of Mg and Al (up to 1 wt.% Mg and 1 wt.% Al) and traditional zinc coatings produced by hot dip galvanizing, concerning some important properties of coatings like coating structure, cracks formation after deformation and corrosion resistance of deformed samples was studied. It was shown, that while traditional hot-dip zinc coatings are formed by homogenous zinc layer, exhibiting only low amount of soluble aluminium, coatings enriched by small amounts of Mg and Al, namely 0.6% Mg and 0.8% Al are formed by dendritic zinc matrix and interdendritic phase containing Zn-Mg-Al eutectics. Development of cracks was investigated in the area of maximal deformation of the samples subjected to stretching. It was found, that while traditional zinc coatings showed sporadic long fine cracks, zinc coatings enriched with Mg and Al exhibited aggregation of short thick cracks in the deformed area. Samples of both materials after stretching were also exposed in neutral salt spray atmosphere in corrosion chamber. It can be concluded, that material with coatings enriched with Mg and Al showed better results in corrosion tests contrary to the presence of massive cracks in the coating. This significantly increased corrosion resistance is possible due to excellent adhesion of zinc coatings, containing Mg and Al on drawing steels.


2014 ◽  
Vol 789 ◽  
pp. 79-83 ◽  
Author(s):  
Xing Yan Gao ◽  
Ning Liu ◽  
Yun Xue Jin ◽  
Zhi Xuan Zhu

The effects of Co contents on the microstructure characteristic and phase structure of CoxCrCuFeNi high-entropy alloys were investigated by SEM, EDS and XRD. The microstructures consisted of dendrites and many nanoprecipitations in the interdendritic. Increase Co contents,the size of nanoprecipitated phase in the interdendritic firstly increased and then decreased slightly. According to XRD analysis, two simple FCC phases, dendrite phase and Cu-rich interdendritic phase were found. As a result of slow diffusion, supersaturated solid solution was formed during solidification and then nanophase was precipitated during the following cooling process. The results of EDS revealed that Fe、Co and Cr were rich in dendrites, while Cu was rich at the interdendritic. For element Ni, which was rich in dendrites when x≤1.0, but was almost the normal value in dendrites for x>1.0. The reason for segregation was related to the positive mixing enthalpy between elements. The contents of Co had little impact on the hardness of CoxCrCuFeNi high-entropy alloys according to micro-hardness testing.


RSBO ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 17-24
Author(s):  
André Rocha Pimenta ◽  
Marilia Garcia Diniz ◽  
Sidnei Paciornik ◽  
Carlos Antonio Freire Sampaio ◽  
Mauro Sayão de Miranda ◽  
...  

There is a growing concern on the development of adequate materials to interact with the human body. Several researches have been conducted on the development of biomaterials for dental applications. Objective: This study aimed to determine the microstructural and mechanical properties of a nickel- based alloy, after the casting process. Material and methods: The alloy was melted through lost wax technique and centrifugation, by using blowtorch with liquefied petroleum gas. To evaluate the mechanical properties, tensile bond strength and microhardness tests were performed. The microstructural characterization was performed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Statistical analyses were performed on microhardness results, through Student t test. A program for digital image processing was used to determine the percentage of the existing phases. Results and conclusion: The tensile strength was higher than that reported by the manufacturer, 559.39±25.63MPa versus 306 MPa, respectively. However, the yield strength was slightly lower, 218.71±29.75 MPa versus 258 MPa, reported by the manufacturer. The microhardness tests showed about 70 HV, far above the value informed by the manufacturer (21 HV). It can be affirmed with 95% confidence interval that the casting process did not alter the material’s hardness. The alloy’s microstructure is formed by a matrix with dendritic aspect and gray color and a second white interdendritic phase with equally distributed precipitates as well as porosities. EDS tests showed that the matrix is rich in nickel and chromium, the interdendritic second phase is rich in molybdenum and the precipitates in titanium or silicon. The matrix represents 86% of the area and the second phase 12%.


Sign in / Sign up

Export Citation Format

Share Document