Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application

2016 ◽  
Vol 680 ◽  
pp. 473-479 ◽  
Author(s):  
Patrick Rufangura ◽  
Cumali Sabah
2015 ◽  
Vol 29 (30) ◽  
pp. 1550188
Author(s):  
Furkan Dincer ◽  
Muharrrem Karaaslan ◽  
Oguzhan Akgol ◽  
Emin Unal ◽  
Cumali Sabah

We theoretically and numerically designed a perfect metamaterial absorber at microwave frequencies. The proposed design has a very simple geometry, wide band properties and provides perfect absorption for all polarization angles which is one of the most desired properties for an absorber structure to be used in the applications where the source polarization is unknown. In order to explain the absorption mechanism both numerical and theoretical analyses are carried out. Designed structure offers a perfect absorption at around 9.8 GHz. The resonance frequency does not change depending on the source wave polarization. In addition, it can be easily reconfigured for THz and infrared regimes for different applications such as sensors, defense systems and stealth technologies.


2011 ◽  
Vol 28 (6) ◽  
pp. 067808 ◽  
Author(s):  
Chao Gu ◽  
Shao-Bo Qu ◽  
Zhi-Bin Pei ◽  
Hua Ma ◽  
Zhuo Xu ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.


2021 ◽  
Vol 868 ◽  
pp. 159253
Author(s):  
Andrea Ruiz-Perona ◽  
Galina Gurieva ◽  
Michael Sun ◽  
Tim Kodalle ◽  
Yudania Sánchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document