scholarly journals Independently Tunable Multipurpose Absorber with Single Layer of Metal-Graphene Metamaterials

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Chen Han ◽  
Renbin Zhong ◽  
Zekun Liang ◽  
Long Yang ◽  
Zheng Fang ◽  
...  

This paper reports an independently tunable graphene-based metamaterial absorber (GMA) designed by etching two cascaded resonators with dissimilar sizes in the unit cell. Two perfect absorption peaks were obtained at 6.94 and 10.68 μm with simple single-layer metal-graphene metamaterials; the peaks show absorption values higher than 99%. The mechanism of absorption was analyzed theoretically. The independent tunability of the metamaterial absorber (MA) was realized by varying the Fermi level of graphene under a set of resonators. Furthermore, multi-band and wide-band absorption were observed by the proposed structure upon increasing the number of resonators and resizing them in the unit cell. The obtained results demonstrate the multipurpose performance of this type of absorber and indicate its potential application in diverse applications, such as solar energy harvesting and thermal absorbing.

2021 ◽  
Author(s):  
Muhammad Fahim Zafar ◽  
Usman Masud

Abstract Developing a highly efficient and multiple-bands metamaterial absorber is a hot issue in recent era. In this paper, A multiple-bands metamaterial absorber has been presented which is based in X, Ku and K-band. Firstly, we have designed two single layer basic unit cell of X-shape and cross-shape, then they are arranged in the multi-layers structure form for the purpose of obtaining multiple- bands and wide band absorption. The proposed absorber is able to work in multiple bands because it has six peaks in the frequency range of 8–24 GHz with having near perfect absorption. Moreover, the sixth peak has a wideband absorption which is 2.93 GHz. Furthermore, the proposed absorber is also tested for polarization insensitivity and also for oblique incidence. Absorption was found polarization insensitive with almost perfect absorption.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950056 ◽  
Author(s):  
Mehmet Bagmanci ◽  
Muharrem Karaaslan ◽  
Emin Unal ◽  
Oguzhan Akgol ◽  
Mehmet Bakır ◽  
...  

In this study, a novel metamaterial absorber (MA) is designed and numerically demonstrated for solar energy harvesting. The structure is composed of three layers with different thicknesses. The interactions of three layers bring about the plasmonic resonances. Although the main operation frequency of the structure is chosen between 430 and 770 THz, which is the visible light regime, the proposed structure is also investigated in the ultra-violet (UV) region. One can see from the results that the proposed structure carries nearly perfect absorption capacity that is more than 91% at the whole visible light spectrum. The proposed structure even has the absorption capacity of 99% between 556 and 657 THz. In addition, the designed MA is also investigated in terms of its polarization and angle independency. Results show that the proposed structure is independent from the polarization and incident angles. Lastly, the designed structure can be considered to be used in solar energy applications as a harvester since it has an ultra-broadband absorption characteristic in visible light regime.


Solar Energy ◽  
2021 ◽  
Vol 230 ◽  
pp. 1165-1174
Author(s):  
Yu Qiu ◽  
Pengfei Zhang ◽  
Qing Li ◽  
Yuanting Zhang ◽  
Weihong Li

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1985
Author(s):  
Maged A. Aldhaeebi ◽  
Thamer S. Almoneef

The design of a dual polarized metasurface collector based on the metamaterial full absorption concept for electromagnetic energy harvesting is introduced. Unlike previous metamaterial absorber designs, here the power absorbed is mostly dissipated across a resistive load rather than within the dielectric substrate. This is achieved by channeling the absorbed power to an optimal resistive load through a via hole. The simulation results show that a power absorption efficiency of 98% is achieved at an operating frequency of 2 GHz for a single unit cell. A super unit cell consisting of four cells with alternating vias was also designed to produce a dual polarized metasurface. The simulation results yielded a radiation to AC efficiency of around 98% for each polarization.


2011 ◽  
Vol 239-242 ◽  
pp. 1260-1264
Author(s):  
Wei Wei Ji ◽  
Tao Wang ◽  
Yan Nie ◽  
Rong Zhou Gong

Based on the impedance matching and electromagnetic resonant characteristic of composite materials, we present a single-layer metamaterial absorber consisting of arch copper loop and substrate FR-4, of which the resonant frequency depended on the loop’s geometry perimeter. By combining resonant loops with different dimensions together, we can achieve multi-band absorption. The standard finite difference time domain method was used to calculate the magnitudes of reflectance, and then the induced surface current and power loss distributions were demonstrated to analyze the insight physical picture of the multi-band resonant feature. By optimizing the simulation results, the absorptivities of two absorption peaks are all above 98% when the number of copper loops is two, 95% for three absorption peaks of three loops, and 87% for four absorption peaks of four loops.


2018 ◽  
Vol 32 (25) ◽  
pp. 1850275 ◽  
Author(s):  
Emin Ünal ◽  
Mehmet Bağmancı ◽  
Muharrem Karaaslan ◽  
Oguzhan Akgol ◽  
Cumali Sabah

A new metamaterial absorber (MA) having distinct properties than those given in the literature is investigated. Although several designs have been studied for achieving absorption characteristics in single-band, dual-band and multiple bands within the whole spectrum of solar light, there has been limited number of researches examining the broadband MA in the visible light section of the spectrum. The designed structure is composed of the combination of three layers having different thicknesses including a metallic substrate, dielectric and a metal layer. Due to the sandwich-like structure, it can support the plasmonic resonance. The proposed structure, which provides a maximum absorption level of 99.42% at 579.26 THz, has a high absorption rate of 99% between the frequency band 545 and 628 THz. Numerical results indicate that the proposed structure has perfect absorption which is greater than 90.98% through the whole working frequency band. The dependency of the designed structure on the polarization angle is investigated for different incident angles with TE and TM polarizations as well as the TEM mode. In addition to its potential applications such as solar cells and cloaking, the designed structure can also be considered as a color sensor and an optical frequency sensor.


2015 ◽  
Vol 29 (30) ◽  
pp. 1550188
Author(s):  
Furkan Dincer ◽  
Muharrrem Karaaslan ◽  
Oguzhan Akgol ◽  
Emin Unal ◽  
Cumali Sabah

We theoretically and numerically designed a perfect metamaterial absorber at microwave frequencies. The proposed design has a very simple geometry, wide band properties and provides perfect absorption for all polarization angles which is one of the most desired properties for an absorber structure to be used in the applications where the source polarization is unknown. In order to explain the absorption mechanism both numerical and theoretical analyses are carried out. Designed structure offers a perfect absorption at around 9.8 GHz. The resonance frequency does not change depending on the source wave polarization. In addition, it can be easily reconfigured for THz and infrared regimes for different applications such as sensors, defense systems and stealth technologies.


Author(s):  
Mehmet Bağmancı ◽  
Muharrem Karaaslan ◽  
Emin Ünal ◽  
Oguzhan Akgol ◽  
Faruk Karadağ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document