Two-step constrained aging treatment enabled superior two-way shape memory effect and elevated R-phase transformation temperatures in a rapidly solidified Ni51Ti49 alloy

2019 ◽  
Vol 785 ◽  
pp. 1180-1188 ◽  
Author(s):  
C.Y. Zeng ◽  
S. Cao ◽  
Y.Y. Li ◽  
Z.X. Zhao ◽  
Z.W. Zhu ◽  
...  
1991 ◽  
Vol 246 ◽  
Author(s):  
K. H. Wu

AbstractTi50-(Pd(x)-Ni(50-x)) alloys were prepared with Pd ranging from 18 at% to 22%. Both hot-rolled strips and melt-spun ribbons were fabricated. Heat treatments from 400°C to 1000éC were evaluated. It was found that the meltspun ribbons demonstrated much higher transformation temperatures than those of as-cast materials. However, the hot-rolled strips failed to display a shape memory effect, as well as those ribbons with 18 at.% and 20% Pd.


2017 ◽  
Vol 62 (2) ◽  
pp. 1367-1370 ◽  
Author(s):  
Y.-W. Kim ◽  
T.W. Mukarati

AbstractNon-toxic Ti-Nb-Mo scaffolds were fabricated by sintering rapidly solidified alloy fibers for biomedical applications. Microstructure and martensitic transformation behaviors of the porous scaffolds were investigated by means of differential scanning calorimetric and X-ray diffraction. Theα″–βtransformation occurs in the as-solidified fiber and the sintered scaffolds. According to the compressive test of the sintered scaffolds with 75% porosity, they exhibit good superelasticity and strain recovery ascribed to the stress-induced martensitic transformation and the shape memory effect. Because of the high porosity of the scaffolds, an elastic modulus of 1.4 GPa, which matches well with that of cancellous bone, could be obtained. The austenite transformation finishing temperature of 77Ti-18Nb-5Mo alloy scaffolds is 5.1°C which is well below the human body temperature, and then all mechanical properties and shape memory effect of the porous 77Ti-18Nb-5Mo scaffolds are applicable for bon replacement implants.


2015 ◽  
Vol 661 ◽  
pp. 98-104 ◽  
Author(s):  
Kuang-Jau Fann ◽  
Pao Min Huang

Because of being in possession of shape memory effect and superelasticity, Ni-Ti shape memory alloys have earned more intense gaze on the next generation applications. Conventionally, Ni-Ti shape memory alloys are manufactured by hot forming and constraint aging, which need a capital-intensive investment. To have a cost benefit getting rid of plenty of die sets, this study is aimed to form Ni-Ti shape memory alloys at room temperature and to age them at elevated temperature without any die sets. In this study, starting with solution treatments at various temperatures, which served as annealing process, Ni-rich Ni-Ti shape memory alloy wires were bent by V-shaped punches in different curvatures at room temperature. Subsequently, the wires were aged at different temperatures to have shape memory effect. As a result, springback was found after withdrawing the bending punch and further after the aging treatment as well. A higher solution treatment temperature or a smaller bending radius leads to a smaller springback, while a higher aging treatment temperature made a larger springback. This springback may be compensated by bending the wires in further larger curvatures to keep the shape accuracy as designed. To explore the shape memory effect, a reverse bending test was performed. It shows that all bent wires after aging had a shape recovery rate above 96.3% on average.


2020 ◽  
Vol 6 (2) ◽  
pp. 170-180 ◽  
Author(s):  
Yoko Yamabe-Mitarai ◽  
Brandon Ohl ◽  
Karolina Bogdanowicz ◽  
Ewelina Muszalska

2006 ◽  
Vol 47 (3) ◽  
pp. 615-618 ◽  
Author(s):  
Harunobu Tomita ◽  
Teiko Okazaki ◽  
Yasubumi Furuya

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Muhammad Safwan Shuhaimi ◽  
Nubailah Abd. Hamid ◽  
Rosliza Razali ◽  
Muhammad Hussain Ismail

This project is investigates of NiTi shape memory alloy for simple smart application. The shape memory effect (SME) is attributed from the reversible phase transformation when subjected to stress and temperature. In this study, a small model of CAMAR logo was designed to mimic the shape memory effect. Three samples of wire were investigated; (i) Austenitic NiTi (ii) Martensitic NiTi and (iii) commercial plain carbon steel. The reversible austenite to martensite transformation of the NiTi wire was investigated by a differential scanning calorimetry (DSC) at temperatures ranging from -50 and 200oC. The wire was shaped into CAMAR logo using a mould and then heated at 500°C for 30 minutes in a high temperature furnace. To observe the shape effect recovery, the wire was straighten and reheated in warm water at different temperatures. Results showed that the austenitic wire exhibited complete shape memory recovery after heated at temperature approximately 35°C and  80°C. For the martensitic wire, complete recovery was only observed when the water temperature was ~ 80°C and no recovery was observed at ~30°C. This recovery effect was significantly influenced by the reversible phase transformation temperatures (PTTs) which attributed from the Austenite finish (Af) temperature.


Sign in / Sign up

Export Citation Format

Share Document