porous ti
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 122)

H-INDEX

35
(FIVE YEARS 10)

Author(s):  
Carolina da Silva Dias ◽  
Mariana Correa Rossi ◽  
Emanuel V. P. Apolonio ◽  
Gustavo dos Santos Rosa ◽  
João Pedro Hübbe Pfeifer ◽  
...  

AbstractMagnesium is a metal used in the composition of titanium alloys and imparts porosity. Due to its osteoconductive, biocompatible and biodegradable characteristics, its application in the development of biomedical materials has become attractive. This study aimed to evaluate the influence of magnesium present in porous Ti-Nb-Sn alloys, which have a low elastic modulus in adhesive, osteogenic properties and the amount of reactive intracellular oxygen species released in mesenchymal stem cells derived from bone marrow equine bone (eBMMSCs). Mechanical properties of the alloy, such as hardness, compressive strength and elastic modulus, were analyzed, as well as surface morphological characteristics through scanning electron microscopy. The evaluation of magnesium ion release was performed by atomic force spectroscopy. The biological characteristics of the alloy, when in contact with the alloy surface and with the culture medium conditioned with the alloy, were studied by SEM and optical microscopy. Confirmation of osteogenic differentiation by alizarin red and detection of ROS using a Muse® Oxidative Stress Kit based on dihydroetide (DHE). The alloy showed an elastic modulus close to cortical bone values. The hardness was close to commercial Ti grade 2, and the compressive strength was greater than the value of cortical bone. The eBMMSCs adhered to the surface of the alloy during the experimental time. Osteogenic differentiation was observed with the treatment of eBMMMSCs with conditioned medium. The eBMMSCs treated with conditioned medium decreased ROS production, indicating a possible antioxidant defense potential of magnesium release.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012224
Author(s):  
N Ganesh ◽  
S Rambabu

Abstract In this article, design and finite element simulation of porous Ti-6Al-4V alloy structures was presented. Typically, titanium and titanium alloy implants can be manufactured with required pore size and porosity volume by using powder bed fusion techniques due to advancement in additive manufacturing technologies. However, the mismatch of elastic modulus between human cortical bone and the dense Ti-6Al-4V alloy implant resulted in stress shielding which accelerate the implant failure. The porous implant structures help in reduce the mismatch of elastic modulus between the cortical bone and implant structure and also improve the bone ingrowth. Hence, the present work focuses on design of Ti-6Al-4V alloy porous structures with various porosities ranging from 10% to 70% and simulated to determine the elastic modulus suitable for human cortical bone. The sample with 45% porosity is found to be best suited for replacement of cortical bone with elastic modulus of 74Gpa, preventing stress shielding effect and enhanced chances of bone ingrowth.


2021 ◽  
pp. 2106627
Author(s):  
Pablo Salcedo‐Abraira ◽  
Artem A. Babaryk ◽  
Eva Montero‐Lanzuela ◽  
Oscar R. Contreras‐Almengor ◽  
María Cabrero‐Antonino ◽  
...  

2021 ◽  
pp. 127-156
Author(s):  
A. I. Costa ◽  
J. Géringer ◽  
F. Toptan
Keyword(s):  

2021 ◽  
Vol 11 (17) ◽  
pp. 8023
Author(s):  
Chan-Hee Song ◽  
Jun-Sung Park ◽  
Byung-Wan Choi ◽  
Jung Sub Lee ◽  
Chi-Seung Lee

(1) Background: Metallic materials are predominantly used for spinal implants, and they can damage adjacent bones and intervertebral discs (IVDs) owing to their high elastic moduli. Consequently, there is a possibility that serious complications, such as kyphosis, may occur as the sequelae progresses. In this study, the behavior of the lumbar spine and implant system was evaluated using the finite element (FE) method, by applying the porous structure to the spinal implants to resolve the problem of metal spinal implants. (2) Methods: An FE model was developed for lumbar 3–5, and it was assumed that, owing to disease occurrence, spinal implants were placed in lumbar 3–4. Currently, Ti–6Al–4V is the most commonly used material for spinal implants. The shape of the porous structure was set in the form of a diamond, and porosity was varied over nine values ranging from 0 to 81%. Finally, equivalent material properties of the porous structure were derived using the Ramberg–Osgood formula, with reference to experimental study. (3) Results: The range of motion was increased, and the equivalent stress of adjacent IVD, and adjacent bone stress of the pedicle screw and spinal cage, decreased with increasing porosity of the spinal implants. As the porosity decreased, the safety factor exhibited a tendency to decrease rapidly. (4) Conclusion: Motor capacity of the spine was improved, and the equivalent stress of the spinal tissues decreased with the increasing porosity of the spinal implants. Therefore, in the future, porous structures can significantly contribute to the improvement of implants through continuous complementary research.


2021 ◽  
Author(s):  
Carolina da Silva Dias ◽  
Mariana Correa Rossi ◽  
Emanuel V. P. Apolonio ◽  
Gustavo dos Santos Rosa ◽  
João Pedro Hübbe Pfeifer ◽  
...  

Abstract Introduction: Magnesium is a metal used in the composition of titanium alloys and imparts porosity. Due to its osteoconductive, biocompatible and biodegradable characteristics, its application in the development of biomedical materials has become attractive.Objective: This study aimed to evaluate the influence of magnesium present in porous Ti-Nb-Sn alloys, which have a low elastic modulus in adhesive, osteogenic properties and the amount of reactive intracellular oxygen species released in mesenchymal stem cells derived from bone marrow equine bone (eBMMSCs).Methods: Mechanical properties of the alloy, such as hardness, compressive strength and elastic modulus, were analyzed, as well as surface morphological characteristics through scanning electron microscopy. The evaluation of magnesium ion release was performed by atomic force spectroscopy. The biological characteristics of the alloy, when in contact with the alloy surface and with the culture medium conditioned with the alloy, were studied by SEM and optical microscopy. Confirmation of osteogenic differentiation by alizarin red and detection of ROS using a Muse® Oxidative Stress Kit based on dihydroetide (DHE).Results and discussion: The alloy showed an elastic modulus close to cortical bone values. The hardness was close to commercial Ti grade 2, and the compressive strength was greater than the value of cortical bone. The eBMMSCs adhered to the surface of the alloy during the experimental time. Osteogenic differentiation was observed with the treatment of eBMMMSCs with conditioned medium. The eBMMSCs treated with conditioned medium decreased ROS production, indicating a possible antioxidant defense potential of magnesium release.


Author(s):  
Ding Yang ◽  
Zhenyun Tian ◽  
Jingjing Song ◽  
Tengfei Lu ◽  
Guibao Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document