Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater

2020 ◽  
Vol 832 ◽  
pp. 154833 ◽  
Author(s):  
Tao E ◽  
Dan Ma ◽  
Shuyi Yang ◽  
Xin Hao
2020 ◽  
Vol 20 (4) ◽  
pp. 2205-2213 ◽  
Author(s):  
Ying-Xia Ma ◽  
Xin Li ◽  
Wen-Jie Shao ◽  
Ya-Lan Kou ◽  
Hai-Peng Yang ◽  
...  

Author(s):  
Dianxin Li ◽  
Peng Zhang ◽  
Yiqing Yang ◽  
Yuqi Huang ◽  
Tao Li ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 208
Author(s):  
Ramona B. J. Ihlenburg ◽  
Anne-Catherine Lehnen ◽  
Joachim Koetz ◽  
Andreas Taubert

New cryogels for selective dye removal from aqueous solution were prepared by free radical polymerization from the highly water-soluble crosslinker N,N,N’,N’-tetramethyl-N,N’-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The resulting white and opaque cryogels have micrometer sized pores with a smaller substructure. They adsorb methyl orange (MO) but not methylene blue (MB) from aqueous solution. Mixtures of MO and MB can be separated through selective adsorption of the MO to the cryogels while the MB remains in solution. The resulting cryogels are thus candidates for the removal of hazardous organic substances, as exemplified by MO and MB, from water. Clearly, it is possible that the cryogels are also potentially interesting for removal of other compounds such as pharmaceuticals or pesticides, but this must be investigated further.


2021 ◽  
Author(s):  
Niu Yuhua ◽  
Han Xingxing ◽  
Song Jie ◽  
Huang Liangxian

Novel magnetic gel beads were successfully fabricated via polyvinyl alcohol (PVA) and sodium alginate (SA) double cross-linked network loaded ferroferric oxide@potassium humate (Fe3O4@KHA) nanoparticles. PVA/SA/Fe3O4@KHA gel beads were found to...


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Gen Liu ◽  
Wei Ma ◽  
Yan Luo ◽  
Deng-ming Sun ◽  
Shuang Shao

Poly(methylene blue) and electrochemically reduced graphene oxide composite film modified electrode (PMB-ERGO/GCE) was successfully fabricated by electropolymerization and was used for simultaneous determination of uric acid (UA) and xanthine (Xa). Based on the excellent electrocatalytic activity of PMB-ERGO/GCE, the electrochemical behaviors of UA and Xa were studied by cyclic voltammetry (CV) and square wave voltammetry (SWV). Two anodic sensitive peaks at 0.630 V (versus Ag/AgCl) for UA and 1.006 V (versus Ag/AgCl) for Xa were given by CV in pH 3.0 phosphate buffer. The calibration curves for UA and Xa were obtained in the range of 8.00 × 10−8~4.00 × 10−4 M and 1.00 × 10−7~4.00 × 10−4 M, respectively, by SWV. The detection limits for UA and Xa were3.00×10-8 M and5.00×10-8 M, respectively. Finally, the proposed method was applied to simultaneously determine UA and Xa in human urine with good selectivity and high sensitivity.


Sign in / Sign up

Export Citation Format

Share Document