electrochemically reduced graphene oxide
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 96)

H-INDEX

39
(FIVE YEARS 9)

Author(s):  
Nelia Abraham Sanga ◽  
Nazeem Jahed ◽  
Zandile Leve ◽  
Emmanuel Iwuoha ◽  
Keagan Pokpas

Abstract Electroanalysis of heavy metal ions in the presence of cupferron ligands has been extensively studied due to its ability to form stable metallic coordination complexes. Herein, electrochemically reduced graphene oxide (ERGO) sheets were for the first time employed in conjunction with low-cost, disposable pencil graphite rods and in-situ plated thin mercury films (HgF) for the simultaneous detection of Cd2+, Cu2+, Pb2+, and Zn2+ in the presence of cupferron as a chelating agent by square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV). The technique is based on the catalytic reduction of adsorbed cupferron-metal ion complexes at the surface of the ERGO-HgF-PGE at 0.1 V for 60 s in 0.1 M acetate buffer solution (pH 4.6). Owing to the improved electronic and surface effects associated with ERGO inclusion, improved sensitivity was further achieved. Under optimized conditions, the ERGO-HgF-PGE showed a linear relationship from 20 to 200 µg.L-1 with detection limits below the US-EPA of 0.17 μg.L-1 , 0.02 μg.L-1 , 0.17 μg.L-1 and 0.14 μg.L-1 for Cd2+, Cu2+, Pb2+ and Zn2+, respectively at a deposition time of 60 s. The ERGO-HgF-PGE exhibited highly reproducible results with negligible intermetallic interferences and applied successfully to the determination of trace metals in tap water with satisfactory results.


Author(s):  
Yanju Wu ◽  
Zikang Li ◽  
Dongyang Han ◽  
Qunpeng Duan ◽  
Fei Wang

Abstract On the surface of a glassy carbon electrode, electrochemically reduced graphene oxide-cationic pillar[6]arene (ErGO-CP6) composite film was constructed using a pulsed potential method. UV-vis spectra, SEM, Raman spectra and electrochemical experiments were applied to characterize the composite film. It was then used as a new electrochemical sensing platform for determination of thiamethoxam. Due to the synergistic effect of ErGO and CP6, this composite film shows a higher sensitivity and better selectivity toward thiamethoxam than that of ErGO film. The linear range from 1.0 × 10-7 to 1.3 × 10-5 mol L-1 was obtained by differential pulse voltammetry. Meanwhile, the method was applied to cucumber and tomato samples in a recovery test. The recovery was between 92.0% and 98.7%, and the results are satisfactory. This study presents a promising electrochemical sensing platform for rapid and sensitive analysis of thiamethoxam.


Biosensors ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 321
Author(s):  
Angélica Domínguez-Aragón ◽  
Rocio B. Dominguez ◽  
Erasto Armando Zaragoza-Contreras

An electrochemical sensor based on electrochemically reduced graphene oxide (ErGO), carboxylated carbon nanotubes (cMWCNT), and gold nanoparticles (AuNPs) (GCE/ErGO-cMWCNT/AuNPs) was developed for the simultaneous detection of dihidroxybenzen isomers (DHB) hydroquinone (HQ), catechol (CC), and resorcinol (RS) using differential pulse voltammetry (DPV). The fabrication and optimization of the system were evaluated with Raman Spectroscopy, SEM, cyclic voltammetry, and DPV. Under optimized conditions, the GCE/ErGO-cMWCNT/AuNPs sensor exhibited a linear concentration range of 1.2–170 μM for HQ and CC, and 2.4–400 μM for RS with a detection limit of 0.39 μM, 0.54 μM, and 0.61 μM, respectively. When evaluated in tap water and skin-lightening cream, DHB multianalyte detection showed an average recovery rate of 107.11% and 102.56%, respectively. The performance was attributed to the synergistic effects of the 3D network formed by the strong π–π stacking interaction between ErGO and cMWCNT, combined with the active catalytic sites of AuNPs. Additionally, the cMWCNT provided improved electrocatalytic properties associated with the carboxyl groups that facilitate the adsorption of the DHB and the greater amount of active edge planes. The proposed GCE/ErGO-cMWCNT/AuNPs sensor showed a great potential for the simultaneous, precise, and easy-to-handle detection of DHB in complex samples with high sensitivity.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1078
Author(s):  
Belén Chico ◽  
Blanca Teresa Pérez-Maceda ◽  
Sara San José ◽  
María Lorenza Escudero ◽  
María Cristina García-Alonso ◽  
...  

Improvements in the lubrication of metal–metal joint prostheses are of great clinical interest in order to minimize the particles released during wear–corrosion processes. In this work, electrochemically reduced graphene oxide (ErGO) on CoCr was functionalized with hyaluronic acid (ErGOHA). Functionalization was carried out by soaking for 24 h in phosphate buffer saline (PBS) solution containing 3 g/L hyaluronic acid (HA). The corrosion performance of CoCrErGO and CoCrErGOHA surfaces was studied by electrochemical impedance spectroscopy (EIS) for 7 days in PBS. Biocompatibility and cytotoxicity were studied in mouse macrophages J774A.1 cell line by the measurement of mitochondrial activity (WST-1 assay) and plasma membrane damage (LDH assay). The inflammatory response was examined through TNF-α and IL-10 cytokines in macrophages culture supernatants, used as indicators of pro-inflammatory and anti-inflammatory responses, respectively. EIS diagrams of CoCrErGOHA revealed two time constants: the first one, attributed to the hydration and diffusion processes of the HA layer adsorbed on ErGO, and the second one, the corrosion resistance of ErGOHA/CoCr interface. Macrophage assays showed better behavior on CoCrErGOHA than CoCr and CoCrErGO surfaces based on their biocompatible, cytotoxic, and inflammatory responses. Comparative analysis of IL-10 showed that functionalization with HA induces higher values of anti-inflammatory cytokine, suggesting an improvement in inflammatory behavior.


Sign in / Sign up

Export Citation Format

Share Document