Amorphous CoSx nanoparticles anchoring onto N-doped carbon nanotubes as high-performance electrodes for hybrid supercapacitors

2021 ◽  
Vol 865 ◽  
pp. 158756
Author(s):  
Dingxi Li ◽  
Congmei Yue ◽  
Boyang Hu ◽  
Hougui Li ◽  
Hongwei Che ◽  
...  
2021 ◽  
Author(s):  
Yi He ◽  
Lei Xie ◽  
Shixiang Ding ◽  
Yujia Long ◽  
Xinyi Zhou ◽  
...  

Although the zinc oxide (ZnO) with wide distribution is one of the most attractive energy storage materials, the low electronic conductivity and insufficient active sites of bulk ZnO increase the...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Won Lee ◽  
Joon Young Cho ◽  
Mi Jeong Kim ◽  
Jung Hoon Kim ◽  
Jong Hwan Park ◽  
...  

AbstractSoft electronic devices that are bendable and stretchable require stretchable electric or electronic components. Nanostructured conducting materials or soft conducting polymers are one of the most promising fillers to achieve high performance and durability. Here, we report silver nanoparticles (AgNPs) embedded with single-walled carbon nanotubes (SWCNTs) synthesized in aqueous solutions at room temperature, using NaBH4 as a reducing agent in the presence of highly oxidized SWCNTs as efficient nucleation agents. Elastic composite films composed of the AgNPs-embedded SWCNTs, Ag flake, and polydimethylsiloxane are irradiated with radiation from a Xenon flash lamp within a time interval of one second for efficient sintering of conductive fillers. Under high irradiation energy, the stretchable electrodes are created with a maximum conductivity of 4,907 S cm−1 and a highly stretchable stability of over 10,000 cycles under a 20% strain. Moreover, under a low irradiation energy, strain sensors with a gauge factor of 76 under a 20% strain and 5.4 under a 5% strain are fabricated. For practical demonstration, the fabricated stretchable electrode and strain sensor are attached to a human finger for detecting the motions of the finger.


2021 ◽  
Vol 4 (1) ◽  
pp. 801-809
Author(s):  
Qiqi Shi ◽  
Qi Zhang ◽  
Ye Yang ◽  
Qian Zang ◽  
Zhenyu Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document