cocr alloy
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 31)

H-INDEX

15
(FIVE YEARS 4)

2021 ◽  
Vol 21 (4) ◽  
pp. 320-328
Author(s):  
Haydar H.J. Jamal Al Deen

Metals are used extensively in biomedical applications due to their mechanical strength, corrosion resistance, and biocompatibility. There are many types of metals and alloys used in this application ( stainless steel, Ti and Ti alloys, CoCr, dental amalgam, etc). This review focus on CoCr alloys which have excellent corrosion resistance and mechanical properties which make them the best choice for many types of surgical implants. There are many alloying elements used to improve the properties of CoCr alloy such as ( Zr, In, Ta, etc ) has been reviewed.


Alloy Digest ◽  
2021 ◽  
Vol 70 (11) ◽  

Abstract Deloro Stellite 25 is a cobalt-chromium-tungsten-nickel alloy. This tungsten strengthened cobalt-chromium alloy is the cast version of the wrought cobalt-base alloy L605. Deloro Stellite 25 is resistant to wear, galling, and corrosion and retains this resistance at high temperatures. Its exceptional wear resistance is due mainly to the unique inherent characteristics of the hard carbide phase dispersed in a CoCr alloy matrix. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as machining. Filing Code: Co-142. Producer or source: Deloro Wear Solutions GmbH.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jie Chen ◽  
Yongqiang Yang ◽  
Shibiao Wu ◽  
Mingkang Zhang ◽  
Shuzhen Mai ◽  
...  

Purpose In this paper, the mechanical properties and corrosion resistance of CoCr alloy fabricated by selective laser melting (SLM) were studied, and the changes of performance after porcelain sintering process were also analysed. This study is to point out the relationship between the microstructure, mechanical properties and corrosion resistance of CoCr alloys prepared by SLM after porcelain sintering process. In addition, the biosafety of the sintered CoCr alloy was evaluated. Design/methodology/approach The microscopic feature changes of CoCr alloy samples after porcelain sintering process were observed by DMI 5000 M inverted metallographic microscope and Nova Nano430 FE-SEM. Moreover, phase identification and determination were conducted by X-ray diffraction (XRD) using Smartlab X-ray diffractometer. The Vickers microhardness was measured on the HVS-30 microhardness tester, and tensile tests were carried out on a CM3505 electronic universal testing machine. The corrosion resistance was tested by a classical three-point electrode system electrochemical method, then the ion precipitation was measured by using an atomic absorption spectrometer of Z2000 7JQ8024. Findings The XRD results indicate that the transition of γ phase (FCC) to e phase (HCP) occurs during the porcelain sintering processing of CoCr alloy. Moreover, the Vickers microhardness of the upper surface and the side surface of the CoCr alloy sample was improved by more than 36%. In addition, the ultimate strength of CoCr alloy via porcelain sintering treatment was increase to 1,395.3 ± 53.0 MPa compared to 1,282.7 ± 10.1 MPa of unprocessed CoCr alloy. However, the corrosion resistance of CoCr alloy samples decreases after porcelain sintering process. Originality/value There are few studies on the relationship of microstructure, mechanical properties and corrosion resistance of CoCr alloys prepared by SLM after porcelain sintering process. In this study, the microstructure, mechanical properties and corrosion resistance of CoCr alloy after porcelain sintering process were studied, and the biosafety of the alloy was evaluated. The research found that it is feasible to apply CoCr alloy fabricated by SLM to dental medicine after porcelain sintering process.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4147
Author(s):  
Dorota Rylska ◽  
Grzegorz Sokolowski ◽  
Monika Lukomska-Szymanska

The aim of the study was to evaluate how heat processing used for dental porcelain firing influences the surface properties of sintered and casted CoCr alloy. Two CoCr alloys, Soft Metal LHK (milling in soft material and sintering) and MoguCera C (casting), were used for the study. The samples were examined using SEM–EDS before and after heat treatment. Next, corrosion examinations (Ecorr, jcorr, polarization curve, Ebr) were performed. Finally, the samples were evaluated under SEM. Based on the results, the following conclusions might be drawn: 1. Thermal treatment (porcelain firing) did not cause chemical impurities formation on the surface of CoCr alloy; 2. The sintered metal exhibited significantly higher corrosion resistance than the casted one due to its homogeneity of structure and chemical composition; 3. Heat treatment (porcelain firing) decreased the resistance of casted and sintered CoCr alloy to electrochemical corrosion. The reduction in corrosion resistance was significantly higher for the casted alloy than for the sintered alloy; 4. The corrosion resistance decrease might be due to an increased thickness and heterogeneity of oxide layers on the surface (especially for the casted alloy). The development of corrosion process started in the low-density areas of the oxide layers; 5. The sintered metal seems to be a favourable framework material for porcelain fused to metal crowns.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 849
Author(s):  
Dragana Majerič ◽  
Vojkan Lazić ◽  
Peter Majerič ◽  
Aleksa Marković ◽  
Rebeka Rudolf

Cobalt-chromium (CoCr) alloys have been used in dentistry for dental bridges, crowns and implants for decades. When using CoCr alloys, a number of fractures have occurred in the Dental Laboratory, both when handling the castings and after they have been placed in the patient’s mouth. It is assumed that the key cause of the resulting fractures of CoCr dental bridges is the casting process, which includes the preparation and mixing of the basic components of the CoCr dental alloy, unstable solidification and the final treatment of the tooth casting surface. The aim of this study was, therefore, to examine three castings differently prepared from the CoCr alloy. For the initial CoCr alloy, we selected the one supplied directly from the manufacturer; three test samples were CoCr alloy remelted four times in the same crucible, while the fourth sample was the remaining solidified alloy from the crucible, taken at the last remelting. Characterisation of the microstructure of all four samples was performed by optical and scanning electron microscopy equipped with an energy dispersive X-ray spectroscope and X-ray diffractometry. Microhardness measurements were also performed. The investigation revealed that the microstructure of the castings is composed of a CoCr alloy matrix with a eutectic interdendritic composition and interdendritic precipitates, which were rich in W and Mo. The two oxides were identified as chromium oxide with silicon content and chromium oxide, which originated from the CoCr alloy as casting residue. The high content of silicon in the chromium oxide can be attributed to the silicon oxide from the ceramic melting crucible, mixed in with the remains from the CoCr alloy melting. The second oxide showed a more regular elemental content for chromium oxide, mixed with a small quantity of impurities and the casting CoCr alloy. Based on this research, some recommendations were made for working with CoCr alloys in the Dental Laboratory, with the aim of reducing the risk of dental bridge fractures in the future.


Wear ◽  
2021 ◽  
pp. 203819
Author(s):  
M. Alvarez-Vera ◽  
Javier A. Ortega ◽  
I.A. Ortega-Ramos ◽  
H.M. Hdz-García ◽  
R. Muñoz-Arroyo ◽  
...  

2020 ◽  
Vol 36 ◽  
pp. 101553
Author(s):  
Murat Isik ◽  
Jose D. Avila ◽  
Amit Bandyopadhyay

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Dongwhan Suh ◽  
Woo Lam Jo ◽  
Seung Chan Kim ◽  
Yong Sik Kim ◽  
Soon Yong Kwon ◽  
...  

Abstracts Background Titanium surface coating on cobalt-chromium (CoCr) alloy has characteristics desirable for an orthopedic implant as follows: strength, osteointegrative capability, and biocompatibility. Creating such a coated surface takes a challenging process and two dissimilar metals are not easily welded. In our study, we utilized additive manufacturing with a 3D printing called direct metal fabrication (DMF) and compared it to the plasma spraying method (TPS), to coat titanium onto CoCr alloy. We hypothesized that this would yield a coated surface quality as acceptable or better than the already established method of plasma spraying. For this, we compared characteristics of titanium-coated surfaces created by direct metal fabrication method (DMF) and titanium plasma spraying (TPS), both in vitro and in vivo, for (1) cell morphology, (2) confocal microscopy images of immunofluorescent assay of RUNX2 and fibronectin, (3) quantification of cell proliferation rate, (4) push-out biomechanical test, and (5) bone histomorphometry. Method For in vitro study, human osteoblast cells were seeded onto the coated surfaces. Cellular morphology was observed with a scanning electron microscope. Cellular proliferation was validated with ELISA, immunofluorescent assay. For in vivo study, coated rods were inserted into the distal femur of the rabbit and then harvested. The rods were biomechanically tested with a push-out test and observed for histomorphometry to evaluate the microscopic bone to implant ratio. Result For cell morphology observation, lamellipodia and filopodia, a cytoplasmic projection extending into porous structure, formed on both surfaces created by DMF and TPS. The proliferation of the osteoblasts, the DMF group showed a better result at different optic density levels (p = 0.035, 0.005, 0.001). Expression and distribution of fibronectin and Runx-2 genes showed similar degrees of expressions. The biomechanical push-out test yielded a similar result (p = 0.714). Histomorphometry analysis also showed a similar result (p = 0.657). Conclusion In conclusion, DMF is a method which can reliably create a proper titanium surface on CoCr alloy. The resulting product of the surface shows a similar quality to that of the plasma spraying method, both in vivo and in vitro, in terms of biological and mechanical property.


Sign in / Sign up

Export Citation Format

Share Document