Modification of the Cu current collector by magnetron sputtering to improve the cycle performance of MxOy (M:Ni,Mn,Co) anodes for lithium ion batteries

2021 ◽  
Vol 872 ◽  
pp. 159594
Author(s):  
Reyhan Solmaz ◽  
B. Deniz Karahan
2019 ◽  
Vol 223 ◽  
pp. 152-156 ◽  
Author(s):  
Sang-Hyun Moon ◽  
Si-Jin Kim ◽  
Min-Cheol Kim ◽  
Jin-Young So ◽  
Ji-Eun Lee ◽  
...  

2015 ◽  
Vol 645-646 ◽  
pp. 1145-1149
Author(s):  
Jie Lin ◽  
Jian Lai Guo ◽  
Chang Liu ◽  
Hang Guo

A Cu doped V2O5film for lithium-ion batteries is prepared by magnetron sputtered using a vanadium target. Coppers are doped in varying proportions to investigate the effect of doping on the electrochemical properties. In comparison, the surface of doped samples is smooth and uniform. And the results of electrochemical tests indicate that the proper doped films (V: Cu=8: 1 by area) exhibit better cycle performance, wider voltage plateaus and higher capacity than other samples.


2015 ◽  
Vol 176 ◽  
pp. 604-609 ◽  
Author(s):  
Shu-Wen Kang ◽  
Hai-Ming Xie ◽  
Weimin Zhang ◽  
Jing-Ping Zhang ◽  
Zifeng Ma ◽  
...  

2019 ◽  
Vol 48 (11) ◽  
pp. 7543-7550 ◽  
Author(s):  
Meiqing Guo ◽  
Weijia Meng ◽  
Xiaogang Zhang ◽  
Zhongchao Bai ◽  
Genwei Wang ◽  
...  

2011 ◽  
Vol 228-229 ◽  
pp. 309-314
Author(s):  
Xing Xian Tang ◽  
Yong Tang ◽  
Bang Yan Ye ◽  
Long Sheng Lu

A three-dimensional “fin-groove” composite structure copper current collector was fabricated by micro-ploughing process. 3D and common 2D carbon anodes for lithium- ion batteries were prepared. The electrochemical properties of these electrodes were studied by linear sweep cyclic voltammetry (CV) and charge-discharge (C-D) test. 2D anode showed high contact resistance, high coulombic efficiency but poor cycle performance. In contrast, 3D anode showed the structure superiority in reinforcing bonding force between active materials and copper substrate, improving the conductive environment and alleviating volume changes. It was believed that 3D anode can keep high coulombic efficiency and improve the cycle performance of lithium- ion batteries.


2016 ◽  
Vol 8 (45) ◽  
pp. 30926-30932 ◽  
Author(s):  
Jiangmin Jiang ◽  
Ping Nie ◽  
Bing Ding ◽  
Wenxin Wu ◽  
Zhi Chang ◽  
...  

2020 ◽  
Vol 59 (1) ◽  
pp. 477-487 ◽  
Author(s):  
Zhuang Liu ◽  
Haiyang Fu ◽  
Bo Gao ◽  
Yixuan Wang ◽  
Kui Li ◽  
...  

AbstractThis paper studies in-situ synthesis of Fe2O3/reduced graphene oxide (rGO) anode materials by different hydrothermal process.Scanning Electron Microscopy (SEM) analysis has found that different processes can control the morphology of graphene and Fe2O3. The morphologies of Fe2O3 prepared by the hydrothermal in-situ and oleic acid-assisted hydrothermal in-situ methods are mainly composed of fine spheres, while PVP assists The thermal in-situ law presents porous ellipsoids. Graphene exhibits typical folds and small lumps. X-ray diffraction analysis (XRD) analysis results show that Fe2O3/reduced graphene oxide (rGO) is generated in different ways. Also, the material has good crystallinity, and the crystal form of the iron oxide has not been changed after adding GO. It has been reduced, and a characteristic peak appears around 25°, indicating that a large amount of reduced graphene exists. The results of the electrochemical performance tests have found that the active materials prepared in different processes have different effects on the cycle performance of lithium ion batteries. By comprehensive comparison for these three processes, the electro-chemical performance of the Fe2O3/rGO prepared by the oleic acid-assisted hydrothermal method is best.


Sign in / Sign up

Export Citation Format

Share Document