Substrate temperature optimization of pulsed-laser-deposited and in-situ Zn-supplemented-CZTS films and their integration into photovoltaic devices

2021 ◽  
pp. 162292
Author(s):  
Z.O. Elhmaidi ◽  
E. Saucedo ◽  
M Abd-Lefdil ◽  
M.A. El Khakani
2002 ◽  
Vol 17 (3) ◽  
pp. 697-700 ◽  
Author(s):  
D. B. Jan ◽  
Q. X. Jia ◽  
M. E. Hawley ◽  
G. W. Browne ◽  
C. J. Wetteland ◽  
...  

The formation of superconducting YBa2Cu3O7–x (Y123) by in situ pulsed laser deposition from a stoichiometric Y123 target typically requires an oxygen-ambient environment (P ˜ 100–300-mtorr O2) and appropriate substrate temperature during deposition. We have found that pulsed laser deposition from a Y123 target in vacuo onto a (001) LaAlO3 substrate favors the formation of Y2O3. We observed that the Y2O3 (001) films yield three-dimensional nanoscale morphologies that are markedly different from the planar growth surface of conventional superconducting c-axis Y123 films and Y2O3 films formed from the pulsed laser ablation of a Y2O3 target.


1996 ◽  
Vol 441 ◽  
Author(s):  
P.-J. Kung ◽  
J. E. Cosgrove ◽  
K. Kinsella ◽  
D. G. Hamblen

AbstractDuring pulsed-laser deposition of La0.67Ca0.33MnO3 films on silicon substrates, a system that consists of visible optical-emission spectroscopy (OES) and Fourier transform infrared (FT-IR) spectroscopy is employed to perform in-situ diagnosis of the laser-induced plume and to monitor the substrate temperature and the film thickness. The effects of oxygen pressure, laser fluence, and distance from the target surface on emission spectra were studied. In FT-IR measurements, the slopes of the reflectance versus wavenumber curves were observed to increase with film thickness and hence with time, which provides end-point detection during the film growth. La0.67Ca0.33MnO3 films with (100), (110), and mixed orientations, depending on the substrate temperature, were deposited on yttria-stabilized zirconia (YSZ) buffered Si(100) and Si(111) substrates. In a magnetic field of 5 T, the maximum magnetoresistance (MR) values of 250% at 195 K and 164% at 140 K were observed in the as-deposited (110) and (100) films, respectively.


Solar Energy ◽  
2018 ◽  
Vol 174 ◽  
pp. 286-295 ◽  
Author(s):  
Arunachalam Arulraj ◽  
Mohan Ramesh ◽  
Balasubramanian Subramanian ◽  
Govindan Senguttuvan

1998 ◽  
Vol 299 (1-2) ◽  
pp. 15-22 ◽  
Author(s):  
A Canesi ◽  
M.R Cimberle ◽  
C Ferdeghini ◽  
A Diaspro ◽  
P Guasconi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document