O4-03-07: A Comparison of Network Connectivity and Atrophy Patterns in Behavioral Variant Frontotemporal Dementia

2010 ◽  
Vol 6 ◽  
pp. e17-e17
Author(s):  
Jennifer L. Whitwell ◽  
David T. Jones ◽  
Ramesh Avula ◽  
Guang Zeng ◽  
Prashanthi Vemuri ◽  
...  
2013 ◽  
Vol 25 (5) ◽  
pp. 802-813 ◽  
Author(s):  
Laura E. Hughes ◽  
James B. Rowe

The neural response to unpredictable auditory events is suggested to depend on frontotemporal interactions. We used magnetoencephalography in patients with behavioral variant frontotemporal dementia to study change detection and to examine the impact of disease on macroscopic network connectivity underlying this core cognitive function. In patients, the amplitudes of auditory cortical responses to predictable standard tones were normal but were reduced for unpredictable deviant tones. Network connectivity, in terms of coherence among frontal, temporal, and parietal sources, was also abnormal in patients. In the beta frequency range, left frontotemporal coherence was reduced. In the gamma frequency range, frontal interhemispheric coherence was reduced whereas parietal interhemispheric coherence was enhanced. These results suggest impaired change detection resulting from dysfunctional frontotemporal interactions. They also provide evidence of a rostro-caudal reorganization of brain networks in disease. The sensitivity of magnetoencephalography to cortical network changes in behavioral variant frontotemporal dementia enriches the understanding of neurocognitive systems as well as showing potential for studies of experimental therapies for neurodegenerative disease.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Adeline Su Lyn Ng ◽  
Juan Wang ◽  
Kwun Kei Ng ◽  
Joanna Su Xian Chong ◽  
Xing Qian ◽  
...  

Abstract Background Alzheimer’s disease (AD) and behavioral variant frontotemporal dementia (bvFTD) cause distinct atrophy and functional disruptions within two major intrinsic brain networks, namely the default network and the salience network, respectively. It remains unclear if inter-network relationships and whole-brain network topology are also altered and underpin cognitive and social–emotional functional deficits. Methods In total, 111 participants (50 AD, 14 bvFTD, and 47 age- and gender-matched healthy controls) underwent resting-state functional magnetic resonance imaging (fMRI) and neuropsychological assessments. Functional connectivity was derived among 144 brain regions of interest. Graph theoretical analysis was applied to characterize network integration, segregation, and module distinctiveness (degree centrality, nodal efficiency, within-module degree, and participation coefficient) in AD, bvFTD, and healthy participants. Group differences in graph theoretical measures and empirically derived network community structures, as well as the associations between these indices and cognitive performance and neuropsychiatric symptoms, were subject to general linear models, with age, gender, education, motion, and scanner type controlled. Results Our results suggested that AD had lower integration in the default and control networks, while bvFTD exhibited disrupted integration in the salience network. Interestingly, AD and bvFTD had the highest and lowest degree of integration in the thalamus, respectively. Such divergence in topological aberration was recapitulated in network segregation and module distinctiveness loss, with AD showing poorer modular structure between the default and control networks, and bvFTD having more fragmented modules in the salience network and subcortical regions. Importantly, aberrations in network topology were related to worse attention deficits and greater severity in neuropsychiatric symptoms across syndromes. Conclusions Our findings underscore the reciprocal relationships between the default, control, and salience networks that may account for the cognitive decline and neuropsychiatric symptoms in dementia.


Sign in / Sign up

Export Citation Format

Share Document