scholarly journals Calculation of flow heat transfer characteristics of liquid gallium

Author(s):  
Jian Zhou ◽  
Tao Zhou ◽  
Peng Xu
Author(s):  
Changwoo Kang ◽  
Kyung-Soo Yang

Heat transfer characteristics of baffled channel flow, where thin baffles are mounted on both channel walls periodically in the direction of the main flow, have been numerically investigated in a laminar range. In baffled channel flow, heat transfer characteristics are significantly affected by large-scale vortices generated due to flow separation at the tips of the baffles. In this investigation, a parametric study has been carried out to identify the optimal configuration of the baffles to achieve the most efficient heat removal from the channel walls. Two key parameters are considered, namely baffle interval (L) and Reynolds number (Re). We elucidate the role of the primary instability, a Hopf bifurcation from steady to a time-periodic flow, in the convective heat transfer in baffled channel flow. We also propose a contour diagram (“map”) of averaged Nusselt number on the channel walls as a function of the two parameters. The results shed light on understanding and controlling heat transfer mechanism in a finned heat exchanger, being quite beneficial to its design.


Author(s):  
Ahmet Selim Dalkılıç ◽  
Baran Uluç ◽  
Mehmet Salih Cellek ◽  
Ali Celen ◽  
Chaiwat Jumpholkul ◽  
...  

2011 ◽  
Vol 396-398 ◽  
pp. 250-254 ◽  
Author(s):  
Fu Min Shang ◽  
Jian Hong Liu ◽  
Deng Ying Liu

The objective of this article is to provide the heat transfer characteristics of Cu-H2O nanofluids in self-exciting mode oscillating-flow heat pipe under different laser heating input, and to compare with the heat transfer characteristics of the same heat pipe with distilled water as working fluids. In this paper, the peculiarity of heat transfer rate of the SEMOS heat pipe with Cu-H2O fluid has been experimentally confirmed by changing the proportion of working fluid and Cu nanoscale particles in the heat pipe. As the results, it has been confirmed that the parameter of filling rate of working fluid determine the heat transfer rate of SEMOS heat pipe, although under certain condition heat transfer performance could be improved because of the addition of nanofluids.


Author(s):  
Fu-Min Shang ◽  
Yi-Fang Dong ◽  
Jian-Hong Liu ◽  
Deng-Ying Liu

In this article, the heat transferring property of the copper-water nanofluids in self-exciting mode oscillating flow heat pipe under different laser heating power is experimented, as well as is compared with that of the distilled water medium in self-exciting mode oscillating flow heat pipe under same heating condition. The objective of this article is to provide the heat transfer characteristics of Cu-H2O nanofluids in self-exciting mode oscillating-flow heat pipe under different laser heating input, and to compare with the heat transfer characteristics of the same heat pipe with distilled water as working fluids. The SEMOS HP used in this experiment is made of brass tube with 2mm interior diameter, which is consisted of 8 straight tubes with 4 turns’ evaporation section and 12 turns’ condensation section. The heat resource for the evaporation zone is eight channel quantum pitfall diode array semi-conductor laser heater with 940nm radiation wave length, while the radiation power of each channel is changeable within 0–50W and the facular size is 1×30mm2. The condensation section is set in a cooling water tank in which water is from another higher tank. The actual transferring rate could be calculated by the flow rate of the cooling water and the change of the temperature. The change of the temperature of the heat pipe wall is measured by those thermo-couple fixed in different section in the heat pipe and data is collected by a data acquisition. In the heat pipe the fluid filling rate is 43%, the pressure is 2.5×10−3Pa, and the heat pipe inclination angle is 55° while the size of the brass particle in the nanofluids is less than 60nm and volume proportion is 0.5%. In this paper, the particularity of heat transfer rate of the SEMOS heat pipe with Cu-H2O fluid has been experimentally confirmed by changing the proportion of working fluid and Cu nonsocial particles in the heat pipe. By comparing the experimental result of these two different medium in the SEMOS HP, it is shown that the heat transferring rate with brass-water nanofluids as medium is much better than that with distilled water as medium under same volume proportion.


Sign in / Sign up

Export Citation Format

Share Document