scholarly journals Interlobate esker aquifer characterization by high resolution seismic reflection method with landstreamer in SW Finland

2020 ◽  
Vol 177 ◽  
pp. 104014
Author(s):  
Elina Ahokangas ◽  
Joni Mäkinen ◽  
Aki Artimo ◽  
Antti Pasanen ◽  
Heikki Vanhala
Geophysics ◽  
1986 ◽  
Vol 51 (2) ◽  
pp. 295-301 ◽  
Author(s):  
Don W. Steeples ◽  
Ralph W. Knapp ◽  
Carl D. McElwee

Seismic reflection studies were performed across actively developing sinkholes located astride Interstate Highway 70 in Russell County, Kansas. Results indicate that high‐resolution seismic reflection surveys are useful in the subsurface investigation of some sinkholes. In particular, we were able to delineate the subsurface vertical and horizontal extent of the sinkholes because of the excellent acoustical marker‐bed characteristics of the Stone Corral anhydrite. The seismic reflection evidence presented here, combined with borehole information from 1967, suggest that the Stone Corral anhydrite has been down‐dropped within one of the sinkholes as much as 30 m in 13 years. The seismic reflection method is potentially useful in engineering studies of other sinkholes and karst features. The seismic data presented here were obtained in the presence of relatively heavy highway traffic (i.e., up to a few dozen vehicles per minute) using the MiniSOSIE recording technique.


2013 ◽  
Vol 2013 (1) ◽  
pp. 1-6
Author(s):  
Ayman N. Qadrouh ◽  
Abdulrahman G. Alanezi ◽  
Ibraheem K. Hafiz ◽  
Khyzer Munir ◽  
Mazen M. ALyousif

2008 ◽  
Author(s):  
Shunichiro Ito ◽  
Takao Aizawa ◽  
Fumio Nakada ◽  
Ryosuke Kitamura

1988 ◽  
Vol 59 (4) ◽  
pp. 141-150 ◽  
Author(s):  
John. L. Sexton

Abstract An important aspect of seismogenesis concerns the role of preexisting faults and other structural features as preferred zones of weakness in determining the pattern of strain accumulation and seismicity. Reactivation of zones of weakness by present day stress fields may be the cause of many intraplate earthquakes. To understand the relation between reactivated structures and seismicity, it is necessary to identify structures which are properly oriented with respect to the present-day stress field so that reactivation can occur. The seismic reflection method is very useful for identifying and delineating structures, particularly in areas where the structures are buried as in the New Madrid seismic zone. Application of the seismic reflection method in widely separated locations within the New Madrid rift complex has resulted in successful detection and delineation of reactivated rift-related structures which are believed to be associated with earthquake activity. The purpose of this paper is to discuss results from seismic reflection profiling in the New Madrid rift complex. Reflection data from several surveys including USGS Vibroseis* surveys in the Reelfoot rift area reveal reactivated faults and other deep rift-related structures which appear to be associated with seismicity. High-resolution explosive and Mini-Sosie** reflection surveys on Reelfoot scarp and through the town of Cottonwood Grove, Tennessee, clearly show reverse faults in Paleozoic and younger rocks which have been reactivated to offset younger rocks. A Vibroseis survey in the Wabash Valley area of the New Madrid rift complex provides direct evidence for a few hundred feet of post-Pennsylvanian age reactivation of large-offset normal faults in Precambrian-age basement rocks. Several earthquake epicenters have been located in the vicinity of these structures. In the Rough Creek graben, Vibroseis reflection data provide clear evidence for reactivation of basement faults. The success of these reflection surveys shows that well-planned seismic reflection surveys must be included in any program seeking to determine the relationship between preexisting zones of weakness and seismicity of an area.


1976 ◽  
Vol 16 (74) ◽  
pp. 73-88 ◽  
Author(s):  
Gilbert Dewart

AbstractIt appears to be possible to identify certain conditions of thermal regime at the base of a glacier through the seismic reflection method. In some cases layers of water or wet rock debris may be identifiable. The procedure is based upon the reversal of phase of reflected dilatational waves at the interface between ice and a substratum of lower acoustic impedance. Illustrations of the method are given from the west Antarctic ice sheet, and suggestions are made for the improvement of the technique.


Sign in / Sign up

Export Citation Format

Share Document