Combined application of seismic and electrical geophysical methods for karst cavities detection: A case study at the campus of the new University of Western Macedonia, Kozani, Greece

2021 ◽  
pp. 104499
Author(s):  
Eftychia Amanatidou ◽  
George Vargemezis ◽  
Panagiotis Tsourlos
2004 ◽  
Vol 2 (1) ◽  
pp. 49-63 ◽  
Author(s):  
Carlos Magnavita ◽  
Norbert Schleifer

In the last decades, geophysical methods such as magnetic survey have become a common technique for prospecting archaeological sites. At sub-Saharan archaeological sites, however, magnetic survey and correlated techniques never came into broad use and there are no signs for an immediate change of this situation. This paper examines the magnetic survey undertaken on the Nigerian site of Zilum, a settlement of the Gajiganna Culture (ca 1800-400 BC) located in the Chad Basin and dated to ca 600-400 BC. By means of the present case study, we demonstrate the significance of this particular type of investigation in yielding complementary data for understanding the character of prehistoric settlements. In conclusion, we point out that geophysical methods should play a more important role in modern archaeological field research, as they furnish a class of documentation not achievable by traditional survey and excavation methods, thus creating new perspectives for interpreting the past of African societies.


2021 ◽  
Vol 11 (17) ◽  
pp. 7875
Author(s):  
Vincenzo Sapia ◽  
Valerio Materni ◽  
Federico Florindo ◽  
Marco Marchetti ◽  
Andrea Gasparini ◽  
...  

A multi-parametric approach that involves the use of different geophysical methods coupled with geochemical data allowed us to identify undiscovered archeological burials in a funerary area of the Grotte di Castro Etruscan settlement. In particular, we tested the suitability of the capacitive resistivity method and the presence of Radon in soil for the identification of burials calibrating their outcomes over coincident survey profiles with standard geophysical techniques routinely applied for archaeological prospections. Soil Radon data were acquired both in a grid and along a profile to highlight anomalous gas concentrations, whereas electrical resistivity and ground-penetrating radar measurements were conducted on overlapping profiles to depict the electrical and electromagnetic subsurface distribution. Data integration showed a series of anomalies, suggesting the presence of multiple burials starting from a depth of approximately 1.5 m below the terrain surface. Slight anomalies of Radon in the soil were found to correspond to most of the recovered geophysical ones. Our results pointed out the effectiveness of geophysical method integration in archeological prospecting with the novelty of the joint use of Radon in soil measurements and capacitive resistivity tomography. The latter provided reliable results and can be considered as a standalone technique in archaeological surveys.


2021 ◽  
Vol 40 (6) ◽  
pp. 434-441
Author(s):  
Don White ◽  
Thomas M. Daley ◽  
Björn Paulsson ◽  
William Harbert

Borehole geophysical methods are a key component of subsurface monitoring of geologic CO2 storage sites because boreholes form a locus where geophysical measurements can be compared directly with the controlling geology. Borehole seismic methods, including intrawell, crosswell, and surface-to-borehole acquisition, are useful for site characterization, surface seismic calibration, 2D/3D time-lapse imaging, and microseismic monitoring. Here, we review the most common applications of borehole seismic methods in the context of storage monitoring and consider the role that detailed geophysical simulations can play in answering questions that arise when designing monitoring plans. Case study examples are included from the multitude of CO2 monitoring projects that have demonstrated the utility of borehole seismic methods for this purpose over the last 20 years.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Amin Amini ◽  
Hamidreza Ramazi

AbstractThis paper is devoted to the application of the Combined Resistivity Sounding and Profiling electrode configuration (CRSP) to detect underground cavities. Electrical resistivity surveying is among the most favorite geophysical methods due to its nondestructive and economical properties in a wide range of geosciences. Several types of the electrode arrays are applied to detect different certain objectives. In one hand, the electrode array plays an important role in determination of output resolution and depth of investigations in all resistivity surveys. On the other hand, they have their own merits and demerits in terms of depth of investigations, signal strength, and sensitivity to resistivity variations. In this article several synthetic models, simulating different conditions of cavity occurrence, were used to examine the responses of some conventional electrode arrays and also CRSP array. The results showed that CRSP electrode configuration can detect the desired objectives with a higher resolution rather than some other types of arrays. Also a field case study was discussed in which electrical resistivity approach was conducted in Abshenasan expressway (Tehran, Iran) U-turn bridge site for detecting potential cavities and/or filling loose materials. The results led to detect an aqueduct tunnel passing beneath the study area.


Sign in / Sign up

Export Citation Format

Share Document