Constructing shear velocity models from surface wave dispersion curves using deep learning

2021 ◽  
pp. 104524
Author(s):  
Yinhe Luo ◽  
Yao Huang ◽  
Yingjie Yang ◽  
Kaifeng Zhao ◽  
Xiaozhou Yang ◽  
...  
2017 ◽  
Author(s):  
Valentina Socco ◽  
Farbod Khosro Anjom ◽  
Cesare Comina ◽  
Daniela Teodor

1967 ◽  
Vol 57 (5) ◽  
pp. 959-981
Author(s):  
Victor Gregson

abstract Elastic waves produced by an impact were recorded at the surface of a solid 12.0 inch diameter steel sphere coated with a 0.3 inch copper layer. Conventional modeling techniques employing both compressional and shear piezoelectric transducers were used to record elastic waves for one millisecond at various points around the great circle of the sphere. Body, PL, and surface waves were observed. Density, layer thickness, compressional and shear-wave velocities were measured so that accurate surface-wave dispersion curves could be computed. Surface-wave dispersion was measured as well as computed. Measured PL mode dispersion compared favorably with theoretical computations. In addition, dispersion curves for Rayleigh, Stoneley, and Love modes were computed. Measured surface-wave dispersion showed Rayleigh and Love modes were observed but not Stoneley modes. Measured dispersion compared favorably with theoretical computations. The curvature correction applied to dispersion calculations in a flat space has been estimated to correct dispersion values at long-wave lengths to about one per cent of correct dispersion in a spherical model. Measured dispersion compared with such flat space dispersion corrected for curvature proved accurate within one per cent at long wave lengths. Two sets of surface waves were observed. One set was associated with body waves radiating outward from impact. The other set was associated with body waves reflecting at the pole opposite impact. For each set of surface waves, measured dispersion compared favorably with computed dispersion.


1961 ◽  
Vol 51 (4) ◽  
pp. 495-502
Author(s):  
Frank Press ◽  
David Harkrider ◽  
C. A. Seafeldt

Abstract Surface wave analysis has become an important tool for exploration of crustal and mantle structure. The need exists for fast, convenient digital computer programs for computing theoretical dispersion curves and displacements for Rayleigh waves and Love waves. One such program for an IBM 7090 computer is described and made available to the scientific community. Among the conveniences are mail-order service, high speed, and choice of many options.


Sign in / Sign up

Export Citation Format

Share Document