A nonlocal theory of the gradient-drift instability in the ionospheric E-region plasma at mid-latitudes

2004 ◽  
Vol 66 (17) ◽  
pp. 1627-1637 ◽  
Author(s):  
Charles E. Seyler ◽  
José M. Rosado-Román ◽  
Donald T. Farley
2022 ◽  
Vol 14 (2) ◽  
pp. 392
Author(s):  
Lei Qiao ◽  
Gang Chen ◽  
Wanlin Gong ◽  
Xuesi Cai ◽  
Erxiao Liu ◽  
...  

The Wuhan Ionospheric Oblique Backscatter Sounding System (WIOBSS) was applied as a bistatic radar to record the ionospheric E-region responses to a solar eclipse on 22 July 2009. The transmitter was located in Wuhan and the receiver was located in Huaian. The receiver observed anomalous echoes with larger Doppler shifts at the farther ranges compared with the echoes reflected by Es. According to the simulated ray propagation paths of the reflected and scattered waves, we considered that the anomalous echoes were scattered by E-region field-aligned irregularities (FAIs). The locations of the FAIs recorded by the WIOBSS were estimated with the International Geomagnetic Reference Field (IGRF) and the observed propagation parameters. These irregularities occurred at around the eclipse maximum and lasted for ~20–40 min. The steep plasma density gradient induced by the fast drop photo ionization under the lunar shadow was beneficial to the occurrence of gradient drift instability to generate the FAIs. They were different from the gravity wave-induced irregularities occurring in the recovery phase of the solar eclipse.


2005 ◽  
Vol 23 (3) ◽  
pp. 773-779 ◽  
Author(s):  
A. K. Patra ◽  
S. Sripathi ◽  
P. B. Rao ◽  
K. S. V. Subbarao

Abstract. The first results of simultaneous observations made on the low-latitude field-aligned irregularities (FAI) using the MST radar located at Gadanki (13.5° N, 79.2° E, dip 12.5°) and the Es parameters using an ionosonde at a nearby station Sriharikota (13.7° N, 80.1° E, dip 12.6°) are presented. The observations show that while the height of the most intense radar echoes is below the virtual height of Es (h'Es) during daytime, it is found to be either below or above during nighttime. The strength of the FAI is better correlated with the top penetration frequency (ftEs) and the blanketing frequency (fbEs) during the night (r=0.4 in both cases) as compared to the day (r=0.35 and -0.04, respectively). Furthermore, the signal strength of FAI is reasonably correlated with (ftEs-fbEs) during daytime (r=0.59) while very poorly correlated during nighttime (r=0.18). While the radar observations in general appear to have characteristics close to that of mid-latitudes, the relationship of these with the Es parameters are poorer than that of mid-latitudes. The observations reported here, nevertheless, are quite consistent with the expectations based on the gradient drift instability mechanism.


1999 ◽  
Vol 17 (10) ◽  
pp. 1284-1292 ◽  
Author(s):  
R. Rüster ◽  
K. Schlegel

Abstract. Backscatter from E-region irregularities was observed at aspect angles close to 90° (almost parallel to the direction of the magnetic field) using the ALOMAR SOUSY radar at Andoya/Norway. Strong electric fields and increased E-region electron temperatures simultaneously measured with the incoherent scatter facility EISCAT proved that the Farley-Buneman plasma instability was excited. In addition, strong particle precipitation was present as inferred from EISCAT electron densities indicating that the gradient drift instability may have been active, too. Backscatter at such large aspect angles was not expected and has not been observed before. The characteristics of the observed echoes, however, are in many aspects completely different from usual auroral radar results: the Doppler velocities are only of the order of 10 m/s, the half-width of the spectra is around 5 m/s, the echoes originate at altitudes well below 100 km, and they seem to be not aspect-sensitive with respect to the magnetic field direction. We, therefore, conclude that the corresponding irregularities are not caused by the mentioned instabilities and that other mechanism have to be invoked.Key words. Ionosphere (plasma waves and instabilities; ionosphere irregularities; particle precipitaion) · Meteorology and atmospheric dynamics (middle atmosphere dynamics)


2000 ◽  
Vol 18 (9) ◽  
pp. 1172-1181 ◽  
Author(s):  
C. Haldoupis ◽  
K. Schlegel ◽  
G. Hussey

Abstract. In the theory of E-region plasma instabilities, the ambient electric field and electron density gradient are both included in the same dispersion relation as the key parameters that provide the energy for the generation and growth of electrostatic plasma waves. While there exist numerous measurements of ionospheric electric fields, there are very few measurements and limited knowledge about the ambient electron density gradients, ∇Ne, in the E-region plasma. In this work, we took advantage of the EISCAT CP1 data base and studied statistically the vertical electron density gradient length, Lz=Ne/(dNe/dz), at auroral E-region heights during both eastward and westward electrojet conditions and different ambient electric field levels. Overall, the prevailing electron density gradients, with Lz ranging from 4 to 7 km, are found to be located below 100 km, but to move steadily up in altitude as the electric field level increases. The steepest density gradients, with Lz possibly less than 3 km, occur near 110 km mostly in the eastward electrojet during times of strong electric fields. The results and their implications are examined and discussed in the frame of the linear gradient drift instability theory. Finally, it would be interesting to test the implications of the present results with a vertical radar interferometer.Key words: Ionosphere (auroral ionosphere; ionospheric irregularities; plasma waves and instabilities)  


2015 ◽  
Vol 42 (2) ◽  
pp. 201-206 ◽  
Author(s):  
A. Spicher ◽  
T. Cameron ◽  
E. M. Grono ◽  
K. N. Yakymenko ◽  
S. C. Buchert ◽  
...  

2020 ◽  
Vol 175 (1-2) ◽  
pp. 136-140
Author(s):  
Chirag Rathod ◽  
Lee Kordella ◽  
Wayne Scales ◽  
Greg Earle ◽  
Bhuvana Srinivasan

Sign in / Sign up

Export Citation Format

Share Document