Neutral wind-driven gradient drift instability in the low-latitude daytime E region

2011 ◽  
Vol 116 (A3) ◽  
Author(s):  
Zhijin Li ◽  
Libo Liu ◽  
Weixing Wan ◽  
Baiqi Ning
2005 ◽  
Vol 23 (3) ◽  
pp. 773-779 ◽  
Author(s):  
A. K. Patra ◽  
S. Sripathi ◽  
P. B. Rao ◽  
K. S. V. Subbarao

Abstract. The first results of simultaneous observations made on the low-latitude field-aligned irregularities (FAI) using the MST radar located at Gadanki (13.5° N, 79.2° E, dip 12.5°) and the Es parameters using an ionosonde at a nearby station Sriharikota (13.7° N, 80.1° E, dip 12.6°) are presented. The observations show that while the height of the most intense radar echoes is below the virtual height of Es (h'Es) during daytime, it is found to be either below or above during nighttime. The strength of the FAI is better correlated with the top penetration frequency (ftEs) and the blanketing frequency (fbEs) during the night (r=0.4 in both cases) as compared to the day (r=0.35 and -0.04, respectively). Furthermore, the signal strength of FAI is reasonably correlated with (ftEs-fbEs) during daytime (r=0.59) while very poorly correlated during nighttime (r=0.18). While the radar observations in general appear to have characteristics close to that of mid-latitudes, the relationship of these with the Es parameters are poorer than that of mid-latitudes. The observations reported here, nevertheless, are quite consistent with the expectations based on the gradient drift instability mechanism.


2022 ◽  
Vol 14 (2) ◽  
pp. 392
Author(s):  
Lei Qiao ◽  
Gang Chen ◽  
Wanlin Gong ◽  
Xuesi Cai ◽  
Erxiao Liu ◽  
...  

The Wuhan Ionospheric Oblique Backscatter Sounding System (WIOBSS) was applied as a bistatic radar to record the ionospheric E-region responses to a solar eclipse on 22 July 2009. The transmitter was located in Wuhan and the receiver was located in Huaian. The receiver observed anomalous echoes with larger Doppler shifts at the farther ranges compared with the echoes reflected by Es. According to the simulated ray propagation paths of the reflected and scattered waves, we considered that the anomalous echoes were scattered by E-region field-aligned irregularities (FAIs). The locations of the FAIs recorded by the WIOBSS were estimated with the International Geomagnetic Reference Field (IGRF) and the observed propagation parameters. These irregularities occurred at around the eclipse maximum and lasted for ~20–40 min. The steep plasma density gradient induced by the fast drop photo ionization under the lunar shadow was beneficial to the occurrence of gradient drift instability to generate the FAIs. They were different from the gravity wave-induced irregularities occurring in the recovery phase of the solar eclipse.


1999 ◽  
Vol 17 (10) ◽  
pp. 1284-1292 ◽  
Author(s):  
R. Rüster ◽  
K. Schlegel

Abstract. Backscatter from E-region irregularities was observed at aspect angles close to 90° (almost parallel to the direction of the magnetic field) using the ALOMAR SOUSY radar at Andoya/Norway. Strong electric fields and increased E-region electron temperatures simultaneously measured with the incoherent scatter facility EISCAT proved that the Farley-Buneman plasma instability was excited. In addition, strong particle precipitation was present as inferred from EISCAT electron densities indicating that the gradient drift instability may have been active, too. Backscatter at such large aspect angles was not expected and has not been observed before. The characteristics of the observed echoes, however, are in many aspects completely different from usual auroral radar results: the Doppler velocities are only of the order of 10 m/s, the half-width of the spectra is around 5 m/s, the echoes originate at altitudes well below 100 km, and they seem to be not aspect-sensitive with respect to the magnetic field direction. We, therefore, conclude that the corresponding irregularities are not caused by the mentioned instabilities and that other mechanism have to be invoked.Key words. Ionosphere (plasma waves and instabilities; ionosphere irregularities; particle precipitaion) · Meteorology and atmospheric dynamics (middle atmosphere dynamics)


2009 ◽  
Vol 27 (2) ◽  
pp. 537-545 ◽  
Author(s):  
M. S. S. R. K. N Sarma ◽  
C. Raghava Reddy ◽  
K. Niranjan

Abstract. 5.5 MHz HF Doppler radar observations of Sporadic E over an Indian low latitude station, Visakhapatnam (17.7° N, 83.3° E and Dip 20°) with 10 s resolution showed quasi-periodic variations of the echo strength and Doppler velocity variations with periods of a few minutes to a few tens of minutes. The echo strength and Doppler velocity variations with time in different range bins of the ES echo showed variations which are some times similar and some times significantly different in successive range bins at intervals of 7.5 km. The ES echo occurs with the height of maximum echo strength in the range of 100 km to 120 km and some times at 130 km. The altitude variation of the average Doppler velocity is highly variable and the height of maximum echo strength is not the same as the height of maximum Doppler velocity. Observations of ES echoes at different times of the day are presented to bring out the differences between the day and night time ES echoes. The relationship between Radar and ES parameters derived from Ionograms is poorer than that of mid latitudes which is quite consistent with the expectations based on gradient drift instability.


Sign in / Sign up

Export Citation Format

Share Document