Long-period planetary waves in the mesosphere and lower thermosphere above Davis, Antarctica

2007 ◽  
Vol 69 (17-18) ◽  
pp. 2118-2138 ◽  
Author(s):  
D.J. Murphy ◽  
W.J.R. French ◽  
R.A. Vincent
1999 ◽  
Vol 24 (11) ◽  
pp. 1571-1576 ◽  
Author(s):  
P.J.S. Williams ◽  
N.J. Mitchell ◽  
A.G. Beard ◽  
V.St.C. Howells ◽  
H.G. Muller

2012 ◽  
Vol 12 (3) ◽  
pp. 1571-1585 ◽  
Author(s):  
K. A. Day ◽  
M. J. Taylor ◽  
N. J. Mitchell

Abstract. Atmospheric temperatures and winds in the mesosphere and lower thermosphere have been measured simultaneously using the Aura satellite and a meteor radar at Bear Lake Observatory (42° N, 111° W), respectively. The data presented in this study is from the interval March 2008 to July 2011. The mean winds observed in the summer-time over Bear Lake Observatory show the meridional winds to be equatorward at meteor heights during April−August and to reach monthly-mean velocities of −12 m s−1. The mean winds are closely related to temperatures in this region of the atmosphere and in the summer the coldest mesospheric temperatures occur about the same time as the strongest equatorward meridional winds. The zonal winds are eastward through most of the year and in the summer strong eastward zonal wind shears of up to ~4.5 m s−1 km−1 are present. However, westward winds are observed at the upper heights in winter and sometimes during the equinoxes. Considerable inter-annual variability is observed in the mean winds and temperatures. Comparisons of the observed winds with URAP and HWM-07 reveal some large differences. Our radar zonal wind observations are generally more eastward than predicted by the URAP model zonal winds. Considering the radar meridional winds, in comparison to HWM-07 our observations reveal equatorward flow at all meteor heights in the summer whereas HWM-07 suggests that only weakly equatorward, or even poleward flows occur at the lower heights. However, the zonal winds observed by the radar and modelled by HWM-07 are generally similar in structure and strength. Signatures of the 16- and 5-day planetary waves are clearly evident in both the radar-wind data and Aura-temperature data. Short-lived wave events can reach large amplitudes of up to ~15 m s−1 and 8 K and 20 m s−1 and 10 K for the 16- and 5-day waves, respectively. A clear seasonal and short-term variability are observed in the 16- and 5-day planetary wave amplitudes. The 16-day wave reaches largest amplitude in winter and is also present in summer, but with smaller amplitudes. The 5-day wave reaches largest amplitude in winter and in late summer. An inter-annual variability in the amplitude of the planetary waves is evident in the four years of observations. Some 41 episodes of large-amplitude wave occurrence are identified. Temperature and wind amplitudes for these episodes, AT and AW, that passed the Student T-test were found to be related by, AT = 0.34 AW and AT = 0.62 AW for the 16- and 5-day wave, respectively.


2016 ◽  
Vol 14 ◽  
pp. 169-174
Author(s):  
Ch. Jacobi ◽  
N. Samtleben ◽  
G. Stober

Abstract. Meteor radar observations of mesosphere/lower thermosphere (MLT) daily temperatures have been performed at Collm, Germany since August 2004. The data have been analyzed with respect to long-period oscillations at time scales of 2–30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The oscillations may be considered as the signature of planetary waves. The results are compared with analyses from radar wind measurements. Moreover, the temperature oscillations show considerable year-to-year variability. In particular, amplitudes of the quasi 5-day oscillation have increased during the last decade, and the quasi 10-day oscillations are larger if the equatorial stratospheric winds are eastward.


2020 ◽  
Author(s):  
Sheng-Yang Gu

<p>Tidal and planetary waves (PWs) in the mesosphere and lower thermosphere region could have significant impact on the upper thermosphere/ionosphere system through direct propagations, E region wind dynamo, and the change of residual circulations. We would like to show some results from BeiDou and COSMIC observations, as well as TIME-GCM simulations, to illustrate the lower/upper atmospheric couplings through different mechanisms. Generally, the spatial structures of the ionospheric responses to planetary waves agree with the ionospheric fountain effect, which indicates the important roles of equatorial wind dynamos in transmitting planetary wave signals to the ionosphere. The TIME-GCM simulations show that the zonal and meridional components of the planetary waves could result in evident vertical ion drift perturbations, while the net ionospheric effect is related to both their latitudinal structures and phases. The simulations also show that the change of tidal amplitudes and secondary PWs generated by PW-tide interaction are also important to the ionospheric variabilities. Besides, the couplings through PW-induced residual circulations are exhibited by both model simulations and TEC observations from BeiDou satellite system.</p>


Sign in / Sign up

Export Citation Format

Share Document