Comparison of the dynamical response of low latitude middle atmosphere to the major stratospheric warming events in the Northern and Southern Hemispheres

2016 ◽  
Vol 146 ◽  
pp. 205-214 ◽  
Author(s):  
G.J. Bhagavathiammal ◽  
S. Sathishkumar ◽  
S. Sridharan ◽  
S. Gurubaran
2019 ◽  
Vol 9 ◽  
pp. A39 ◽  
Author(s):  
Maxim V. Klimenko ◽  
Vladimir V. Klimenko ◽  
Fedor S. Bessarab ◽  
Timofei V. Sukhodolov ◽  
Pavel A. Vasilev ◽  
...  

We apply the Entire Atmosphere GLobal (EAGLE) model to investigate the upper atmosphere response to the January 2009 sudden stratospheric warming (SSW) event. The model successfully reproduces neutral temperature and total electron content (TEC) observations. Using both model and observational data, we identify a cooling in the tropical lower thermosphere caused by the SSW. This cooling affects the zonal electric field close to the equator, leading to an enhanced vertical plasma drift. We demonstrate that along with a SSW-related wind disturbance, which is the main source to form a dynamo electric field in the ionosphere, perturbations of the ionospheric conductivity also make a significant contribution to the formation of the electric field response to SSW. The post-sunset TEC enhancement and pre-sunrise electron content reduction are revealed as a response to the 2009 SSW. We show that at post-sunset hours the SSW affects low-latitude TEC via a disturbance of the meridional electric field. We also show that the phase change of the semidiurnal migrating solar tide (SW2) in the neutral wind caused by the 2009 SSW at the altitude of the dynamo electric field generation has a crucial importance for the SW2 phase change in the zonal electric field. Such changes lead to the appearance of anomalous diurnal variability of the equatorial electromagnetic plasma drift and subsequent low-latitudinal TEC disturbances in agreement with available observations. Plain Language Summary – Entire Atmosphere GLobal model (EAGLE) interactively calculates the troposphere, stratosphere, mesosphere, thermosphere, and plasmasphere–ionosphere system states and their response to various natural and anthropogenic forcing. In this paper, we study the upper atmosphere response to the major sudden stratospheric warming that occurred in January 2009. Our results agree well with the observed evolution of the neutral temperature in the upper atmosphere and with low-latitude ionospheric disturbances over America. For the first time, we identify an SSW-related cooling in the tropical lower thermosphere that, in turn, could provide additional information for understanding the mechanisms for the generation of electric field disturbances observed at low latitudes. We show that the SSW-related vertical electromagnetic drift due to electric field disturbances is a key mechanism for interpretation of an observed anomalous diurnal development of the equatorial ionization anomaly during the 2009 SSW event. We demonstrate that the link between thermospheric winds and the ionospheric dynamo electric field during the SSW is attained through the modulation of the semidiurnal migrating solar tide.


2003 ◽  
Vol 21 (3) ◽  
pp. 805-817 ◽  
Author(s):  
R. Huth ◽  
P. O. Canziani

Abstract. Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology)


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Sunkara Eswaraiah ◽  
Changsup Lee ◽  
Wonseok Lee ◽  
Yong Ha Kim ◽  
Kondapalli Niranjan Kumar ◽  
...  

2020 ◽  
Vol 207 ◽  
pp. 105352
Author(s):  
S. Eswaraiah ◽  
Kondapalli Niranjan Kumar ◽  
Yong Ha Kim ◽  
G. Venkata Chalapathi ◽  
Wonseok Lee ◽  
...  

2016 ◽  
Author(s):  
Christine Smith-Johnsen ◽  
Yvan Orsolini ◽  
Frode Stordal ◽  
Varavut Limpasuvan ◽  
Kristell Pérot

Abstract. A Sudden Stratospheric Warming (SSW) affects the chemistry and dynamics of the middle atmosphere. The major warmings occur roughly every second year in the Northern Hemispheric (NH) winter, but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Using the National Center for Atmospheric Research's (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (WACCM-SD), this study investigates the effects of this rare warming event on the ozone layer located around the SH mesopause. This secondary ozone layer changes with respect to hydrogen, oxygen, temperature, and the altered SH polar circulation during the major SSW. The 2002 SH winter was characterized by three zonal-mean zonal wind reductions in the upper stratosphere before a fourth wind reversal reaches the lower stratosphere, marking the onset of the major SSW. At the time of these four wind reversals, a corresponding episodic increase can be seen in the modeled nighttime ozone concentration in the secondary ozone layer. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board the satellite Envisat) demonstrate similar ozone enhancement as in the model. This ozone increase is attributable largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. Unlike its NH counterpart, the secondary ozone layer during the SH major SSW appeared to be impacted more by the effects of atomic oxygen than hydrogen.


Sign in / Sign up

Export Citation Format

Share Document