Application of solar quiet (Sq) current in determining mantle conductivity-depth structure in Malaysia

2019 ◽  
Vol 192 ◽  
pp. 104776 ◽  
Author(s):  
Zamri Zainal Abidin ◽  
M.H. Jusoh ◽  
M. Abbas ◽  
A. Yoshikawa
Keyword(s):  
2021 ◽  
Author(s):  
Libor Šachl ◽  
Jakub Velímský ◽  
Javier Fullea

<p><span><span>We have developed and tested a new frequency-domain, spherical harmonic-finite element approach to the inverse problem of global electromagnetic (EM) induction. It is based on the quasi-Newton minimization of data misfit and regularization, and uses the adjoint approach for fast calculation of misfit gradients in the model space. Thus, it allows for an effective inversion of satellite-observed magnetic field induced by tidally driven flows in the Earth's oceans in terms of 3-D structure of the electrical conductivity in the upper mantle.</span></span><span><span> Before proceeding to the inversion of Swarm-derived models of tidal magnetic signatures, we have performed a series of </span></span><span><span>parametric studies</span></span><span><span>, using a 3-D conductivity model WINTERC-e as a testbed.</span></span></p><p><span>The WINTERC-e model has been derived using state-of-the-art laboratory conductivity measurements of mantle minerals, and thermal and compositional model of the lithosphere and upper mantle WINTERC-grav. The latter model is based on the inversion of global surface waveforms, satellite gravity and gradiometry measurements, surface elevation, and heat flow data </span><span><span>in a thermodynamically self-consistent framework. </span></span><span><span>Therefore, the WINTERC-e model, independent of any EM data, represents an ideal target for synthetic tests of the 3-D EM inversion.</span></span><span> </span></p><p><span><span>We tested the impact of </span></span><span><span>the </span></span><span><span>satellite </span></span><span><span>altitude</span></span><span><span>, </span></span><span><span>the truncation degree of the </span></span><span><span>spherical-harmonic </span></span><span><span>expansion of the tidal signals, the random</span></span><span><span> noise in data</span></span><span><span>,</span></span><span> </span><span><span>and </span></span><span><span>of the </span></span><span><span>sub-</span></span><span><span>continental conductivity</span></span><span> </span><span><span>on the </span></span><span><span>ability to recover the sub-oceanic upper-mantle conductivity structure.</span></span><span><span> We </span></span><span><span>demonstrate </span></span><span><span>that </span></span><span><span>with </span></span><span><span>suitable regularization </span></span><span><span>we</span></span><span> </span><span><span>can successfully reconstruct the 3D upper-mantle conductivity below world oceans.</span></span></p>


1999 ◽  
Vol 104 (B8) ◽  
pp. 17735-17745 ◽  
Author(s):  
Mioara Mandea Alexandrescu ◽  
Dominique Gibert ◽  
Jean-Louis Le Mouël ◽  
Gauthier Hulot ◽  
Ginette Saracco

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Jan Saynisch-Wagner ◽  
Julien Baerenzung ◽  
Aaron Hornschild ◽  
Christopher Irrgang ◽  
Maik Thomas

AbstractSatellite-measured tidal magnetic signals are of growing importance. These fields are mainly used to infer Earth’s mantle conductivity, but also to derive changes in the oceanic heat content. We present a new Kalman filter-based method to derive tidal magnetic fields from satellite magnetometers: KALMAG. The method’s advantage is that it allows to study a precisely estimated posterior error covariance matrix. We present the results of a simultaneous estimation of the magnetic signals of 8 major tides from 17 years of Swarm and CHAMP data. For the first time, robustly derived posterior error distributions are reported along with the reported tidal magnetic fields. The results are compared to other estimates that are either based on numerical forward models or on satellite inversions of the same data. For all comparisons, maximal differences and the corresponding globally averaged RMSE are reported. We found that the inter-product differences are comparable with the KALMAG-based errors only in a global mean sense. Here, all approaches give values of the same order, e.g., 0.09 nT-0.14 nT for M2. Locally, the KALMAG posterior errors are up to one order smaller than the inter-product differences, e.g., 0.12 nT vs. 0.96 nT for M2. Graphical Abstract


1977 ◽  
Vol 82 (33) ◽  
pp. 5427-5431 ◽  
Author(s):  
L. R. Alldredge

2001 ◽  
Vol 28 (19) ◽  
pp. 3773-3776 ◽  
Author(s):  
Masahiro Ichiki ◽  
Makoto Uyeshima ◽  
Hisashi Utada ◽  
Zhao Guoze ◽  
Tang Ji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document