scholarly journals Zonal harmonics of solar magnetic field for solar cycle forecast

Author(s):  
V.N. Obridko ◽  
D.D. Sokoloff ◽  
V.V. Pipin ◽  
A.S. Shibalva ◽  
I.M. Livshits
2021 ◽  
Author(s):  
Vladimir Obridko ◽  
Dmitry Sokoloff ◽  
Valery Pipin ◽  
Anastasia Shibalova ◽  
Ilia Livshits

2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


1998 ◽  
Vol 167 ◽  
pp. 493-496
Author(s):  
Dmitri I. Ponyavin

AbstractA technique is used to restore the magnetic field of the Sun viewed as star from the filament distribution seen on Hα photographs. For this purpose synoptic charts of the large-scale magnetic field reconstructed by the McIntosh method have been compared with the Sun-asstar solar magnetic field observed at Stanford. We have established a close association between the Sun-as-star magnetic field and the mean magnetic field inferred from synoptic magnetic field maps. A filtering technique was applied to find correlations between the Sun-as-star and large-scale magnetic field distributions during the course of a solar cycle. The correlations found were then used to restore the Sun-as-star magnetic field and its evolution in the late 1950s and 1960s, when such measurements of the field were not being made. A stackplot display of the inferred data reveals large-scale magnetic field organization and evolution. Patterns of the Sun-as-star magnetic field during solar cycle 19 were obtained. The proposed technique can be useful for studying the solar magnetic field structure and evolution during times with no direct observations.


2020 ◽  
Vol 633 ◽  
pp. A83
Author(s):  
J. Becker Tjus ◽  
P. Desiati ◽  
N. Döpper ◽  
H. Fichtner ◽  
J. Kleimann ◽  
...  

The cosmic-ray Sun shadow, which is caused by high-energy charged cosmic rays being blocked and deflected by the Sun and its magnetic field, has been observed by various experiments, such as Argo-YBJ, Tibet, HAWC, and IceCube. Most notably, the shadow’s size and depth was recently shown to correlate with the 11-year solar cycle. The interpretation of such measurements, which help to bridge the gap between solar physics and high-energy particle astrophysics, requires a solid theoretical understanding of cosmic-ray propagation in the coronal magnetic field. It is the aim of this paper to establish theoretical predictions for the cosmic-ray Sun shadow in order to identify observables that can be used to study this link in more detail. To determine the cosmic-ray Sun shadow, we numerically compute trajectories of charged cosmic rays in the energy range of 5−316 TeV for five different mass numbers. We present and analyze the resulting shadow images for protons and iron, as well as for typically measured cosmic-ray compositions. We confirm the observationally established correlation between the magnitude of the shadowing effect and both the mean sunspot number and the polarity of the magnetic field during the solar cycle. We also show that during low solar activity, the Sun’s shadow behaves similarly to that of a dipole, for which we find a non-monotonous dependence on energy. In particular, the shadow can become significantly more pronounced than the geometrical disk expected for a totally unmagnetized Sun. For times of high solar activity, we instead predict the shadow to depend monotonously on energy and to be generally weaker than the geometrical shadow for all tested energies. These effects should become visible in energy-resolved measurements of the Sun shadow, and may in the future become an independent measure for the level of disorder in the solar magnetic field.


1996 ◽  
Vol 150 ◽  
pp. 31-34 ◽  
Author(s):  
Douglas P. Hamilton ◽  
Eberhard Grün ◽  
Michael Baguhl

AbstractCollisions of asteroids and among Zodiacal cloud particles produce large amounts of submicron-sized debris, much of which is immediately ejected from our solar system by electromagnetic forces. We investigate the trajectories of tiny grains started on circular uninclined orbits within the Zodiacal cloud and find that they reach high ecliptic latitudes during the current configuration of the solar magnetic.field, perhaps accounting for particles detected by the Ulysses spacecraft at latitudes up to 80°. When the solar magnetic field is reversed, particles are more strongly confined to the ecliptic plane and escape the solar system less readily. Both fluxes and spatial densities of sub-micron sized Zodiacal dust particles vary with time through the dependence of orbital dynamics on the 22-year solar cycle.


1993 ◽  
Vol 157 ◽  
pp. 97-106
Author(s):  
P.A. Simon ◽  
J.P. Legrand

From the analysis of a series of data concerning phenomena taking place in the high corona, in the interplanetary medium and in the magnetosphere, we came to the conclusion that we have to take into consideration a two-component solar cycle in which, with a 5–6 yr delay, the cycle of the dipole component of the solar magnetic field and the following sunspot cycle are closely correlated. In order to show the new mechanisms to incorporate into a model of a two-component solar cycle, we discuss several other relevant solar data.


Author(s):  
Donald V. Reames

AbstractThe structure of the Sun, with its energy generation and heating, creates convection and differential rotation of the outer solar plasma. This convection and rotation of the ionized plasma generates the solar magnetic field. This field and its variation spawn all of the solar activity: solar active regions, flares, jets, and coronal mass ejections (CMEs). Solar activity provides the origin and environment for both the impulsive and gradual solar energetic particle (SEP) events. This chapter introduces the background environment and basic properties of SEP events, time durations, abundances, and solar cycle variations.


Sign in / Sign up

Export Citation Format

Share Document