scholarly journals Retinal degeneration-3 protein attenuates photoreceptor degeneration in transgenic mice expressing dominant mutation of human retinal guanylyl cyclase

2021 ◽  
Vol 297 (4) ◽  
pp. 101201
Author(s):  
Igor V. Peshenko ◽  
Elena V. Olshevskaya ◽  
Alexander M. Dizhoor
2018 ◽  
Vol 294 (7) ◽  
pp. 2318-2328 ◽  
Author(s):  
Igor V. Peshenko ◽  
Qinhong Yu ◽  
Sunghyuk Lim ◽  
Diana Cudia ◽  
Alexander M. Dizhoor ◽  
...  

2020 ◽  
Vol 295 (31) ◽  
pp. 10781-10793 ◽  
Author(s):  
Igor V. Peshenko ◽  
Alexander M. Dizhoor

Retinal degeneration-3 (RD3) protein protects photoreceptors from degeneration by preventing retinal guanylyl cyclase (RetGC) activation via calcium-sensing guanylyl cyclase–activating proteins (GCAP), and RD3 truncation causes severe congenital blindness in humans and other animals. The three-dimensional structure of RD3 has recently been established, but the molecular mechanisms of its inhibitory binding to RetGC remain unclear. Here, we report the results of probing 133 surface-exposed residues in RD3 by single substitutions and deletions to identify side chains that are critical for the inhibitory binding of RD3 to RetGC. We tested the effects of these substitutions and deletions in vitro by reconstituting purified RD3 variants with GCAP1-activated human RetGC1. Although the vast majority of the surface-exposed residues tolerated substitutions without loss of RD3's inhibitory activity, substitutions in two distinct narrow clusters located on the opposite sides of the molecule effectively suppressed RD3 binding to the cyclase. The first surface-exposed cluster included residues adjacent to Leu63 in the loop connecting helices 1 and 2. The second cluster surrounded Arg101 on a surface of helix 3. Single substitutions in those two clusters drastically, i.e. up to 245-fold, reduced the IC50 for the cyclase inhibition. Inactivation of the two binding sites completely disabled binding of RD3 to RetGC1 in living HEK293 cells. In contrast, deletion of 49 C-terminal residues did not affect the apparent affinity of RD3 for RetGC. Our findings identify the functional interface on RD3 required for its inhibitory binding to RetGC, a process essential for protecting photoreceptors from degeneration.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 127-138
Author(s):  
Troy Zars ◽  
David R Hyde

Abstract We report isolating the Drosophila retinal degeneration E (rdgE) mutation. The hypomorphic rdgE  1 allele causes rapid photoreceptor degeneration in light and a slower rate of degeneration when the flies are raised in constant darkness. The rdgE  1 flies exhibited an electrophysiological light response that decreased with age, coinciding with the degeneration. This suggests that degeneration caused the loss of the light response. We determined that the ninaE (rhodopsin) mutation, but not norpA [phospholipase C (PLC)], slowed the rdgE-dependent degeneration. This was consistent with the light-enhanced degeneration, but revealed that the degeneration is independent of the PLC-mediated phototransduction cascade. Transmission electron microscopy revealed that rdgE  1 photoreceptors exhibited a number of vesicular transport defects including unpacking/vesiculation of rhabdomeres, endocytosis of novel vesicles by photoreceptors, a buildup of very large multivesicular bodies, and an increased amount of rough endoplasmic reticulum. We determined that the rdgE null phenotype is a late embryonic lethality. Therefore, rdgE  + is required in cells outside of the retina, quite possibly in a large number of neurons. Thus, rdgE may define a mutational class that exhibits both light-enhanced retinal degeneration and a recessive null lethality by perturbing neuronal membrane biosynthesis and/or recycling.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Soumyaparna Das ◽  
Valerie Popp ◽  
Michael Power ◽  
Kathrin Groeneveld ◽  
Jie Yan ◽  
...  

AbstractHereditary degeneration of photoreceptors has been linked to over-activation of Ca2+-permeable channels, excessive Ca2+-influx, and downstream activation of Ca2+-dependent calpain-type proteases. Unfortunately, after more than 20 years of pertinent research, unequivocal evidence proving significant and reproducible photoreceptor protection with Ca2+-channel blockers is still lacking. Here, we show that both D- and L-cis enantiomers of the anti-hypertensive drug diltiazem were very effective at blocking photoreceptor Ca2+-influx, most probably by blocking the pore of Ca2+-permeable channels. Yet, unexpectedly, this block neither reduced the activity of calpain-type proteases, nor did it result in photoreceptor protection. Remarkably, application of the L-cis enantiomer of diltiazem even led to a strong increase in photoreceptor cell death. These findings shed doubt on the previously proposed links between Ca2+ and retinal degeneration and are highly relevant for future therapy development as they may serve to refocus research efforts towards alternative, Ca2+-independent degenerative mechanisms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0239108
Author(s):  
Ryo Terauchi ◽  
Hideo Kohno ◽  
Sumiko Watanabe ◽  
Saburo Saito ◽  
Akira Watanabe ◽  
...  

Retinal inflammation accelerates photoreceptor cell death caused by retinal degeneration. Minocycline, a semisynthetic broad-spectrum tetracycline antibiotic, has been previously reported to rescue photoreceptor cell death in retinal degeneration. We examined the effect of minocycline on retinal photoreceptor degeneration using c-mer proto-oncogene tyrosine kinase (Mertk)−/−Cx3cr1GFP/+Ccr2RFP/+ mice, which enabled the observation of CX3CR1-green fluorescent protein (GFP)- and CCR2-red fluorescent protein (RFP)-positive macrophages by fluorescence. Retinas of Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice showed photoreceptor degeneration and accumulation of GFP- and RFP-positive macrophages in the outer retina and subretinal space at 6 weeks of age. Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice were intraperitoneally administered minocycline. The number of CCR2-RFP positive cells significantly decreased after minocycline treatment. Furthermore, minocycline administration resulted in partial reversal of the thinning of the outer nuclear layer and decreased the number of apoptotic cells, as assessed by the TUNEL assay, in Mertk−/−Cx3cr1GFP/+Ccr2RFP/+ mice. In conclusion, we found that minocycline ameliorated photoreceptor cell death in an inherited photoreceptor degeneration model due to Mertk gene deficiency and has an inhibitory effect on CCR2 positive macrophages, which is likely to be a neuroprotective mechanism of minocycline.


Author(s):  
Ping Song ◽  
Joseph Fogerty ◽  
Lauren T. Cianciolo ◽  
Rachel Stupay ◽  
Brian D. Perkins

Bardet-Biedl syndrome (BBS) is a heterogeneous and pleiotropic autosomal recessive disorder characterized by obesity, retinal degeneration, polydactyly, renal dysfunction, and mental retardation. BBS results from defects in primary and sensory cilia. Mutations in 21 genes have been linked to BBS and proteins encoded by 8 of these genes form a multiprotein complex termed the BBSome. Mutations in BBS2, a component of the BBSome, result in BBS as well as non-syndromic retinal degeneration in humans and rod degeneration in mice, but the role of BBS2 in cone photoreceptor survival is not clear. We used zebrafish bbs2–/– mutants to better understand how loss of bbs2 leads to photoreceptor degeneration. Zebrafish bbs2–/– mutants exhibited impaired visual function as larvae and adult zebrafish underwent progressive cone photoreceptor degeneration. Cone degeneration was accompanied by increased numbers of activated microglia, indicating an inflammatory response. Zebrafish exhibit a robust ability to regenerate lost photoreceptors following retinal damage, yet cone degeneration and inflammation was insufficient to trigger robust Müller cell proliferation. In contrast, high intensity light damage stimulated Müller cell proliferation and photoreceptor regeneration in both wild-type and bbs2–/– mutants, although the bbs2–/– mutants could only restore cones to pre-damaged densities. In summary, these findings suggest that cone degeneration leads to an inflammatory response in the retina and that BBS2 is necessary for cone survival. The zebrafish bbs2 mutant also represents an ideal model to identify mechanisms that will enhance retinal regeneration in degenerating diseases.


Sign in / Sign up

Export Citation Format

Share Document